Background: Dehydroepiandrosterone-sulfate (DHEA-S) has been described as a protector agent against obesity-related pathologies, although the mechanism of action is still unknown. We have shown that DHEA-S acts on adipose tissue (AT), altering the fatty acid (FA) profile in rodents. Thus, we could hypothesize that some of the beneficial effects shown by DHEA-S in humans are related to a modification of the human AT-FA profile. The present study examines this question and whether this effect is tissue-dependent.

Methods: Paired visceral and subcutaneous AT biopsies were obtained from 20 patients who had undergone bariatric surgery. These samples were subjected to primary adipose culture and incubated for 24 h with 1 μM DHEA-S. The FA profile of both control and treated samples were analyzed by gas chromatography.

Results: A reduction in total saturated fatty acids (SFA), the n-6 family of polyunsaturated fatty acids (PUFA) and the n-6/n-3 PUFA ratio was observed after DHEA-S treatment, whereas monounsaturated fatty acids (MUFA) increased. In addition, DHEA-S altered the percentage of several individual FA, decreasing palmitic acid and increasing vaccenic acid in both AT. All estimated desaturase activity ratios slightly increased after DHEA-S treatment, although only the increase of delta-6-desaturase index in both depots reached statistical significance. No depot-specific action of DHEA-S was found between subcutaneous and visceral AT.

Conclusions: In vitro, DHEA-S modifies the AT-FA composition towards a better metabolic profile to a similar extent in the subcutaneous and visceral adipose depots, in both of which a decrease in SFA and increased MUFA are observed after treatment. This effect could help to explain the beneficial effects attributed to DHEA-S. Further studies, however, are required to determine whether the effect of DHEA-S on adipose tissue in vitro is conserved in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11695-009-0064-8DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
fatty acids
12
dhea-s
11
fatty acid
8
beneficial effects
8
dhea-s treatment
8
subcutaneous visceral
8
fatty
5
adipose
5
dehydroepiandrosterone-sulfate modifies
4

Similar Publications

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Hypothalamic neural circuits regulating energy expenditure.

Vitam Horm

January 2025

Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:

The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.

View Article and Find Full Text PDF

The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin.

Vitam Horm

January 2025

Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:

The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.

View Article and Find Full Text PDF

Thoracolumbar spine muscle size and composition changes in long-duration space missions.

Life Sci Space Res (Amst)

February 2025

Department of Biomedical Engineering, Center for Injury Biomechanics, Wake Forest University School of Medicine. 575 N. Patterson Avenue, Suite 530. Winston-Salem, NC 27101, USA. Electronic address:

Muscle atrophy occurs with extended exposure to microgravity. This study quantified the overall muscle size, lean muscle area and fat infiltration changes pre- to post-flight that occur in the thoracic and lumbar spine with long-duration spaceflight. Pre- and post-flight magnetic resonance imaging (MRI) scans were obtained from 9 crewmembers on long-duration (≥6 months) International Space Station (ISS) missions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!