Quantifying proximal and distal sources of NO in asthma using a multicompartment model.

J Appl Physiol (1985)

Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA.

Published: April 2010

Nitric oxide (NO) is detectable in exhaled breath and is thought to be a marker of lung inflammation. The multicompartment model of NO exchange in the lungs, which was previously introduced by our laboratory, considers parallel and serial heterogeneity in the proximal and distal regions and can simulate dynamic features of the NO exhalation profile, such as a sloping phase III region. Here, we present a detailed sensitivity analysis of the multicompartment model and then apply the model to a population of children with mild asthma. Latin hypercube sampling demonstrated that ventilation and structural parameters were not significant relative to NO production terms in determining the NO profile, thus reducing the number of free parameters from nine to five. Analysis of exhaled NO profiles at three flows (50, 100, and 200 ml/s) from 20 children (age 7-17 yr) with mild asthma representing a wide range of exhaled NO (4.9 ppb < fractional exhaled NO at 50 ml/s < 120 ppb) demonstrated that 90% of the children had a negative phase III slope. The multicompartment model could simulate the negative phase III slope by increasing the large airway NO flux and/or distal airway/alveolar concentration in the well-ventilated regions. In all subjects, the multicompartment model analysis improved the least-squares fit to the data relative to a single-path two-compartment model. We conclude that features of the NO exhalation profile that are commonly observed in mild asthma are more accurately simulated with the multicompartment model than with the two-compartment model. The negative phase III slope may be due to increased NO production in well-ventilated regions of the lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853204PMC
http://dx.doi.org/10.1152/japplphysiol.00795.2009DOI Listing

Publication Analysis

Top Keywords

multicompartment model
24
phase iii
16
mild asthma
12
negative phase
12
iii slope
12
model
9
proximal distal
8
features exhalation
8
exhalation profile
8
well-ventilated regions
8

Similar Publications

Background: The body composition of National Collegiate Athletic Association (NCAA) athletes is well documented but no such data exist for university club sports athletes. Additionally, the majority of norms for NCAA athletes were created from individual methods requiring assumptions.

Objective: This study used a four-component (4C) model to measure the body composition of university club sports athletes.

View Article and Find Full Text PDF

Albi score predicts overall survival (OS) in patients with hepatocellular carcinoma (HCC) treated with selective internal radiation therapy (SIRT).

Radiol Med

December 2024

Interventional Radiology Unit, Department of Diagnostic Imaging and Interventional Radiology, A.O.U. Città Della Salute e della Scienza Di Torino, Turin, Italy.

Purpose: We aimed to evaluate the prognostic impact of baseline clinical features and treatment procedure, including liver function measured with albumin-bilirubin (ALBI) formula and dosing methods in HCC patients treated with SIRT.

Material And Methods: The study includes 82 consecutive patients with liver-dominant HCC treated with SIRT (Y glass microspheres, TheraSphereTM) between October 2014 and September 2023. Twenty-five patients were treated with standard dosimetry, while for remaining patients, multi-compartment dosimetry was performed using Simplicit90YTM software.

View Article and Find Full Text PDF

The behavior of an organism is influenced by the complex interplay between its brain, body and environment. Existing data-driven models focus on either the brain or the body-environment. Here we present BAAIWorm, an integrative data-driven model of Caenorhabditis elegans, which consists of two submodels: the brain model and the body-environment model.

View Article and Find Full Text PDF

Dopamine facilitates the response to glutamatergic inputs in astrocyte cell models.

PLoS Comput Biol

December 2024

Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Astrocytes respond to neurotransmitters by increasing their intracellular Ca2+ concentration (Ca2+ signals). While glutamate released by neurons trigger Ca2+ signals through IP3- and glutamate transporter-dependent mechanisms, dopamine released in distant sites activates astrocytes via dopaminergic receptors. However, little is known about the modulatory effects of dopamine on glutamate-evoked astrocytic activity.

View Article and Find Full Text PDF

Background: Finding appropriate model parameters for multi-compartmental neuron models can be challenging. Parameters such as the leak and axial conductance are not always directly derivable from neuron observations but are crucial for replicating desired observations. The objective of this study is to replicate the attenuation behavior of an excitatory postsynaptic potential (EPSP) traveling along a linear chain of compartments on the analog BrainScaleS-2 neuromorphic hardware platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!