Purpose: To compare the diagnostic performances of three T1-weighted 3.0-T magnetic resonance (MR) sequences at carotid intraplaque hemorrhage (IPH) imaging, with histo logic analysis as the reference standard.

Materials And Methods: Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. Twenty patients scheduled for carotid endarterectomy underwent 3.0-T carotid MR imaging, including two-dimensional fast spin-echo, three-dimensional time-of-flight (TOF), and three-dimensional magnetization-prepared rapid acquisition gradient-echo (RAGE) sequences. Two reviewers blinded to the histologic findings assessed the presence, area, and signal intensity of IPH with each sequence. Detection statistics (sensitivity, specificity, and Cohen kappa values) and agreement between area measurements (Pearson correlation coefficient [r] values) were calculated for each sequence.

Results: When all 231 available MR sections were included for analysis, the magnetization-prepared RAGE (kappa = 0.53) and fast spin-echo (kappa = 0.42) sequences yielded moderate agreement between MR and histologic measurements, while the TOF sequence yielded fair agreement (k = 0.33). However, when 47 sections with either small IPHs or heavily calcified IPHs were excluded, sensitivity, specificity, and kappa values, respectively, were 80%, 97%, and 0.80 for magnetization-prepared RAGE imaging; 70%, 92%, and 0.63 for fast spin-echo imaging; and 56%, 96%, and 0.57 for TOF imaging. MR imaging-histologic analysis correlation for IPH area was highest with magnetization-prepared RAGE imaging (r = 0.813), followed by TOF (r = 0.745) and fast spin-echo (r = 0.497) imaging. The capability of these three sequences for IPH detection appeared to be in good agreement with the quantitative contrast of IPH versus background plaque tissue.

Conclusion: The magnetization-prepared RAGE sequence, as compared with the fast spin-echo and TOF sequences, demonstrated higher diagnostic capability for the detection and quantification of IPH. Potential limitations of 3.0-T IPH MR imaging are related to hemorrhage size and coexisting calcification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809926PMC
http://dx.doi.org/10.1148/radiol.09090535DOI Listing

Publication Analysis

Top Keywords

fast spin-echo
20
magnetization-prepared rage
16
imaging
10
carotid intraplaque
8
intraplaque hemorrhage
8
three t1-weighted
8
iph imaging
8
sensitivity specificity
8
kappa values
8
rage imaging
8

Similar Publications

Background: Neuromodulatory subcortical systems (NSS) are affected from the early stages of Alzheimer's Disease (AD) by the accumulation of tau pathology. Increased tau burden within the subcortical nucleus that are in control of sleep and wake regulation may contribute to the breakdown of sleep-wake patterns in AD. A recent postmortem study showed that subcortical wake-promoting neurons were related to sleep phenotypes in AD and PSP, being that greater neuronal count in locus coeruleus (LC), tuberomammillary nucleus (TMN), and lateral hypothalamic area (LHA) associated with a decreased sleep drive (Oh et al.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament (ACL) injury often leads to posttraumatic osteoarthritis (PTOA), despite ACL reconstruction (ACLR). Medial meniscal extrusion (MME) is implicated in PTOA progression but remains understudied after ACL injury and ACLR.

Hypothesis/purpose: It was hypothesized that MME would increase longitudinally after ACL injury and ACLR, with greater changes in the ipsilateral knee compared with the contralateral knee, leading to cartilage degeneration.

View Article and Find Full Text PDF

Introduction: The plantar plate, also called the plantar ligament, is a fibrocartilaginous structure found in the metatarsophalangeal (MTP) and interphalangeal (IP) joints. Our study aimed to evaluate the role of magnetic resonance imaging (MRI) performed with the patient in the standard position or with joint hyperextension (the "stress test", ST) in the study of plantar plate (PP) disease that involves metatarsophalangeal joints.

Materials And Methods: All patients underwent forefoot MRI (Atroscan C, Esaote, Genoa, Italy), operating at 0.

View Article and Find Full Text PDF

Osteochondral Abnormalities on Three-Dimensional Ultrashort Echo Time MRI Scans Are Associated with Knee Cartilage Degradation.

Radiology

December 2024

From the Department of Radiology, Hanyang University Hospital, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea (Sunmin Lee, Y.J.K., Seunghun Lee); Department of Radiology, Hanyang University Guri Hospital, Guri, South Korea (J.R.); Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea (H.Y.L.); Department of Radiology, University of California, Davis, Sacramento, Calif (H.J.); Biostatistics Laboratory, Medical Research Collaborating Center, Industry-University Cooperation Foundation, Hanyang University, Seoul, South Korea (H.W.T., J.K.); and Department of Pre-Medicine, College of Medicine, Hanyang University, Seoul, South Korea (J.K.).

Background The calcified cartilage layer and subchondral bone plate (SBP) contribute to osteoarthritis development. Three-dimensional (3D) ultrashort echo-time (UTE) MRI can help to evaluate calcified cartilage and SBP in various stages of cartilage degradation. Purpose To compare calcified cartilage and SBP abnormalities using 3D UTE MRI with cartilage degradation and osteochondral junction (OCJ) abnormalities observed at proton-density fast spin-echo with fat suppression (PDFS) MRI.

View Article and Find Full Text PDF
Article Synopsis
  • * The T2-weighted fast spin echo (T2W-FSE) MRI technique is commonly used to visualize HIFU-induced thermal lesions but suffers from issues like ringing artifacts and reduced spatial resolution due to T2 decay effects.
  • * By applying an inverse Fourier transform (IFT) multiplication scheme with specially designed filters, researchers improved MRI image quality, resulting in significantly better spatial resolutions and enhanced signal-to-noise ratio in detecting thermal lesions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!