The metalloprotease ADAMTS9 participates in melanoblast development and is a tumor suppressor in esophageal and nasopharyngeal cancer. ADAMTS9 null mice die before gastrulation, but, ADAMTS9+/- mice were initially thought to be normal. However, when congenic with the C57Bl/6 strain, 80% of ADAMTS9+/- mice developed spontaneous corneal neovascularization. beta-Galactosidase staining enabled by a lacZ cassette targeted to the ADAMTS9 locus showed that capillary endothelial cells (ECs) in embryonic and adult tissues and in capillaries growing into heterotopic tumors expressed ADAMTS9. Heterotopic B.16-F10 melanomas elicited greater vascular induction in ADAMTS9+/- mice than in wild-type littermates, suggesting a potential inhibitory role in tumor angiogenesis. Treatment of cultured human microvascular ECs with ADAMTS9 small-interfering RNA resulted in enhanced filopodial extension, decreased cell adhesion, increased cell migration, and enhanced formation of tube-like structures on Matrigel. Conversely, overexpression of catalytically active, but not inactive, ADAMTS9 in ECs led to fewer tube-like structures, demonstrating that the proteolytic activity of ADAMTS9 was essential. However, unlike the related metalloprotease ADAMTS1, which exerts anti-angiogenic effects by cleavage of thrombospondins and sequestration of vascular endothelial growth factor165, ADAMTS9 neither cleaved thrombospondins 1 and 2, nor bound vascular endothelial growth factor165. Taken together, these data identify ADAMTS9 as a novel, constitutive, endogenous angiogenesis inhibitor that operates cell-autonomously in ECs via molecular mechanisms that are distinct from those used by ADAMTS1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832168PMC
http://dx.doi.org/10.2353/ajpath.2010.090655DOI Listing

Publication Analysis

Top Keywords

adamts9+/- mice
12
adamts9
10
endothelial cells
8
tube-like structures
8
vascular endothelial
8
endothelial growth
8
growth factor165
8
adamts9 cell-autonomously
4
cell-autonomously acting
4
acting anti-angiogenic
4

Similar Publications

Introduction: Sepsis-induced cardiomyopathy is a common complication of sepsis and is associated with higher mortality. To date, effective diagnostic and management strategies are still lacking. Recent studies suggest that ferroptosis plays a critical role in sepsis-induced cardiomyopathy and ferroptosis inhibitor Ferrostatin-1 (Fer-1) improved cardiac dysfunction and survival in lipopolysaccharide (LPS) induced endotoxemia.

View Article and Find Full Text PDF

Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury.

Stem Cell Reports

October 2024

Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada; Children Hospital Research Institute of Manitoba, Winnipeg, MB, Canada. Electronic address:

Neural degeneration is a hallmark of spinal cord injury (SCI). Multipotent neural precursor cells (NPCs) have the potential to reconstruct the damaged neuron-glia network due to their tri-lineage capacity to generate neurons, astrocytes, and oligodendrocytes. However, astrogenesis is the predominant fate of resident or transplanted NPCs in the SCI milieu adding to the abundant number of resident astrocytes in the lesion.

View Article and Find Full Text PDF

mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known.

View Article and Find Full Text PDF

Background: Periodontal ligament cells (PDLCs) are key mechanosensory cells involved in extracellular matrix (ECM) remodeling during orthodontic tooth movement (OTM). Mechanical force changes the ECM components, such as collagens and matrix metalloproteinases. However, the associations between the changes in ECM molecules and cellular dynamics during OTM remain largely uncharacterized.

View Article and Find Full Text PDF

Objective: To investigate the X-ray-specific sensitive genes and potential signaling pathways involved in the latent period of radiation-induced lung injury (RILI) in mouse models.

Method: Mice were randomized into groups for whole thoracic irradiation with a single fraction of 20 Gy X-ray or 12.5 Gy carbon heavy ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!