Analysis of HmsH and its role in plague biofilm formation.

Microbiology (Reading)

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St., Lexington, KY, USA.

Published: May 2010

AI Article Synopsis

Article Abstract

The Yersinia pestis Hms(+) phenotype is a manifestation of biofilm formation that causes adsorption of Congo red and haemin at 26 degrees C but not at 37 degrees C. This phenotype is required for blockage of the proventricular valve of the oriental rat flea and plays a role in transmission of bubonic plague from fleas to mammals. Genes responsible for this phenotype are located in three separate operons, hmsHFRS, hmsT and hmsP. HmsH and HmsF are outer membrane (OM) proteins, while the other four Hms proteins are located in the inner membrane. According to the Hidden Markov Method-based predictor, HmsH has a large N terminus in the periplasm, a beta-barrel structure with 16 beta-strands that traverse the OM, eight surface-exposed loops, and seven short turns connecting the beta-strands on the periplasmic side. Here, we demonstrate that HmsH is a heat-modifiable protein, a characteristic of other beta-barrel proteins, thereby supporting the bioinformatics analysis. Alanine scanning mutagenesis was used to identify conserved amino acids in the HmsH-like family that are critical for the function of HmsH in biofilm formation. Of 23 conserved amino acids mutated, four residues affected HmsH function and three likely caused protein instability. We used formaldehyde cross-linking to demonstrate that HmsH interacts with HmsF but not with HmsR, HmsS, HmsT or HmsP. Loss-of-function HmsH variants with single alanine substitutions retained their beta-structure and interaction with HmsF. Finally, using a polar hmsH : : mini-kan mutant, we demonstrated that biofilm development is not important for the pathogenesis of bubonic or pneumonic plague in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889448PMC
http://dx.doi.org/10.1099/mic.0.036640-0DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
hmst hmsp
8
hmsh
8
demonstrate hmsh
8
conserved amino
8
amino acids
8
analysis hmsh
4
hmsh role
4
role plague
4
biofilm
4

Similar Publications

Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of serotypes isolated from necropsied horses in Kentucky.

Microbiol Spectr

January 2025

Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA.

Unlabelled: is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. infections in horses can be either asymptomatic or cause severe clinical illness.

View Article and Find Full Text PDF

Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of .

Med Sci (Basel)

January 2025

Medical and Pharmaceutical Sciences Group, Faculty of Health Sciences, University of Sucre, Sincelejo 700001, Sucre, Colombia.

Background/objectives: is a clinically significant opportunistic pathogen, renowned for its ability to acquire and develop diverse mechanisms of antibiotic resistance. This study examines the resistance, virulence, and regulatory mechanisms in extensively drug-resistant clinical strains of .

Methods: Antibiotic susceptibility was assessed using the Minimum Inhibitory Concentration (MIC) method, and whole-genome sequencing (WGS) was performed on the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .

View Article and Find Full Text PDF

The dairy industry faces challenges in controlling spoilage microorganisms, particularly , known to form resilient biofilms. Conventional disinfection methods have limitations, prompting the exploration of eco-friendly alternatives like ozone. This study focused on biofilms on polystyrene and polyethylene surfaces, evaluating ozone efficacy when incorporated into different water sources and applied under static and dynamic conditions.

View Article and Find Full Text PDF

Environmental cues sometimes have a direct impact on phage particle stability, as well as bacterial physiology and metabolism, having a profound effect on phage infection outcome. Here, we explore the impact of temperature on the interplay between phage (phiIPLA-RODI) and its host, . Our results show that phiIPLA-RODI is a more effective predator at room (25 °C) compared to body temperature (37 °C) against planktonic cultures of several strains with varying degrees of phage susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!