Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane biofilm reactors (MBfR) set up under autotrophic denitrifying and perchlorate-reducing conditions were examined by analyses of the 16S rRNA gene sequences of clone libraries. Inocula from diverse locations were tested for their ability to reduce nitrate and perchlorate in synthetic ion exchange spent brine (45g/l NaCl) using H(2)-based MBfRs. Phylogenetic analysis of 16S rRNA gene sequences showed that proteobacterial species dominated the biofilm communities, particularly nitrate-reducing gamma-proteobacteria. Even though the inocula to the MBfRs came from different sources, clones closely related to Marinobacter hydrocarbonoclasticus represented 53% of all clones in the MBfR biofilms. The clone libraries contained no known perchlorate-reducing bacteria, which suggest that denitrifiers carried out perchlorate reduction, probably by secondary-utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2009.12.028 | DOI Listing |
J Am Chem Soc
January 2025
Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.
Cu electrodeposition and the electrocatalysis of hydrogenation reactions thereupon involve significant interactions with adsorbed hydrogen. Electrochemical mass spectrometry (EC-MS) is used to explore the formation and decomposition of surface hydride on Cu(111) in 0.1 mol L HClO.
View Article and Find Full Text PDFToxics
November 2024
National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.
View Article and Find Full Text PDFOne very unique feature of oxidorhenium(v) complexes is their dual catalytic activity in both reduction of stable oxyanions like perchlorate ClO and nitrate NO as well as epoxidation of olefins. In our ongoing research efforts, we were interested to study how an electron-withdrawing ligand would affect both these catalytic reactions. Hence, we synthesized the novel bidentate dimethyloxazoline-dichlorophenol ligand HL1 and synthesized oxidorhenium(v) complex [ReOCl(L1)] (1).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
In this study, we innovatively proposed a facile method to synthesize ultrafine porous copper (Cu) powders under mild conditions by utilizing the reduction properties of reduced iron (Fe) powders. The results showed that Cu was easily reduced to Cu at 1.05-1.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
University of Delaware, Newark, DE 19716, USA.
Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!