Cooperativity and protein folding rates.

Curr Opin Struct Biol

Department of Physics, Kent State University, Kent, OH 44242, USA.

Published: February 2010

Despite the large and complex conformational space available to an unfolded protein, many small globular proteins fold with simple two-state cooperative kinetics. Understanding what determines folding rates beyond simple rules summarizing kinetic trends has proved to be more elusive than predicting folding mechanism. Topology-based models with smooth energy landscapes give reasonable predictions of the structure of the transition state ensemble, but do not have the kinetic or thermodynamic cooperativity exhibited by two-state proteins. This review outlines some recent efforts to understand what determines the cooperativity and the diversity of folding rates of two-state folding proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2009.12.013DOI Listing

Publication Analysis

Top Keywords

folding rates
12
folding
5
cooperativity protein
4
protein folding
4
rates despite
4
despite large
4
large complex
4
complex conformational
4
conformational space
4
space unfolded
4

Similar Publications

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

This study investigated the progressive morphological alterations and digestive tract development in larval and juvenile red spotted grouper, across growth stages. External shape observations were made using an optical microscope, and the development of the digestive tract was investigated using histological methods. At 1 day after hatching (DAH), the digestive tract appeared as a straight tube extending between the ventral side and yolk-sac.

View Article and Find Full Text PDF

Analysis of enzyme kinetics of fungal methionine synthases in an optimized colorimetric microscale assay for measuring cobalamin-independent methionine synthase activity.

Enzyme Microb Technol

January 2025

Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark. Electronic address:

Aspergillus spp. and Rhizopus spp., used in solid-state plant food fermentations, encode cobalamin-independent methionine synthase activity (MetE, EC 2.

View Article and Find Full Text PDF

Motif-driven dynamics and intermediates during unfolding of multi-domain BphC enzyme.

J Chem Phys

January 2025

Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.

Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.

View Article and Find Full Text PDF

Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!