Amido-5-pyrimidine (1), -4-pyridine (2), -2-pyrazine (3), -2-pyridine (4), and -2-pyridine-N-oxide (5) derivatives of TTF (TTF = tetrathiafulvalene) have been synthesized and characterized. The crystal structure of 1 has been resolved. Their capacities to coordinate paramagnetic transition metal have been explored. The following new molecular compounds have been synthesized and obtained as single crystals: {[Cu(hfac)(2)(1)](H(2)O)}(2) (6), cis-[Mn(hfac)(2)(2)(2)](THF)(2) (7), trans-[Cu(hfac)(2)(3)(2)] (8), trans-[Cu(hfac)(2)(4)(2)] (9), and trans-[M(hfac)(2)(5)(2)] (M = Cu (10), Mn (11), Zn (12)). The crystal structures reveal that the nature of the coordinating substituent plays a fundamental role on the crystalline organization. Cyclic voltammetry measurements have been performed for all the species and they have permitted us to observe the redox activity of the free and linked donors. EPR measurements are in agreement with the solid-state structures. All the ligands and corresponding coordination complexes have been studied by UV-visible absorption spectroscopy. Gaussian deconvolutions have been performed to fit the experimental solid-state absorption curves. Molecular orbital diagram for ligands 4 and 5; and their coordination complexes have been determined. The nature of the thirty to fifty low-lying monoelectronic transitions occurring in the TTF derivatives have been identified by TD-DFT calculations and their corresponding UV-visible absorption spectra have been simulated. Concerning the open-shell complexes, the excitations in the low energy region of their spectra have been calculated to determine the coordination effect on the TTF to acceptor transitions of the ligand fragments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic9023426DOI Listing

Publication Analysis

Top Keywords

coordination complexes
12
uv-visible absorption
8
experimental theoretical
4
theoretical studies
4
studies photophysical
4
photophysical properties
4
properties tuning
4
tuning redox-active
4
redox-active amido-tetrathiafulvalene
4
amido-tetrathiafulvalene derivatives
4

Similar Publications

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

Magnetocaloric Effect in 3D Gd(III)-Oxalate Coordination Framework.

Nanomaterials (Basel)

December 2024

Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) (Ln = Gd/Dy) by the slow release of oxalates in situ from organic ligands (disodium edetate dehydrate (EDTA-2Na) and thiodiglycolic acid).

View Article and Find Full Text PDF

We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!