A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interfacial ion transfers between a monolayer phase of cationic Au nanoparticles and contacting organic solvent. | LitMetric

The highly cationic nanoparticle [Au(225)(TEA-thiolate(+))(22)(SC6Fc)(9)] adsorbs so strongly on Pt electrodes from CH(3)CN/Bu(4)NClO(4) electrolyte solutions that films comprised of 1-2 monolayers of nanoparticles can be transferred to nanoparticle-free electrolyte solutions without desorption and ferrocene voltammetry stably observed. (TEA-thiolate(+) = -S(CH(2))(11)N(CH(2)CH(3))(3)(+); SC6Fc = S(CH(2))(6)-ferrocene; Fc = ferrocene). The Fc(+/0) redox couple's voltammetry is used to detect the adsorption. The apparent formal potential (E(o)'(APP)) of the Fc(+/0) couple depends on the electrolyte--its anion, cation, and concentration--in the contacting nanoparticle-free solution. A 10-fold change in electrolyte concentration shifts the Fc(+/0) E(o)'(APP) by 48-67 mV, depending on the electrolyte. The dependency is interpreted to reflect the energetics of transfer of charge-compensating anions from the electrolyte solution to the monolayer nanoparticle "phase", promoted by the formation of Fc(+) sites in the nanoparticle film. This interpretation is supported by electrochemical quartz crystal microbalance results. Some further aspects of the results suggest adsorption of electrolyte cations at the nanoparticle film/electrolyte solution interface. The interface mimics a liquid/liquid interface between immiscible electrolyte solutions, in which the ion transfer approaches permselective behavior. The experimental results show that even 1-2 monolayers of highly ionic nanoparticles can behave as a polyelectrolyte "phase".

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja909584pDOI Listing

Publication Analysis

Top Keywords

electrolyte solutions
12
1-2 monolayers
8
electrolyte
7
interfacial ion
4
ion transfers
4
transfers monolayer
4
monolayer phase
4
phase cationic
4
cationic nanoparticles
4
nanoparticles contacting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!