During storage stability studies of a monoclonal antibody (mAb) it was determined that the primary route of degradation involved fragmentation into lower molecular weight species. The fragmentation was characterized with size-exclusion high performance liquid chromatography (SE-HPLC), SDS-PAGE, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Fragmentation proceeded via hydrolysis, likely catalyzed by trace metal ions, of a peptide bond in the hinge region of the mAb's heavy chain, which produced two prominent low molecular weight species during storage: a single, free Fab fragment and a Fab + Fc fragment. The fragmentation is observed in phosphate-buffered solutions at two ionic strengths but not in histidine-buffered solutions at identical ionic strengths. Chaotrope-induced and thermally induced unfolding studies of the mAb indicated differences in the unfolding pathways between the two buffer solutions. The folding intermediate observed during chaotrope-induced unfolding was further characterized by intrinsic fluorescence quenching, which suggested that a small portion of the molecule is resistant to chaotrope-induced unfolding in histidine buffer systems. The thermally induced unfolding indicates a reduction in cooperativity of the unfolding process in the presence of histidine relative to phosphate. A relationship between the histidine-induced effects on unfolding pathway and the relative resistance to fragmentation is suggested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938388PMC
http://dx.doi.org/10.1002/jps.22056DOI Listing

Publication Analysis

Top Keywords

monoclonal antibody
8
molecular weight
8
weight species
8
fab fragment
8
ionic strengths
8
thermally induced
8
induced unfolding
8
chaotrope-induced unfolding
8
unfolding
7
fragmentation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!