This study describes the collagen-I coating of titanium and steel implants via cold low-pressure gas plasma treatment. To analyze the coatings in terms of biocompatibility osteoblast-like osteosarcoma cells and human leukocytes were cultivated on the metal surfaces. Two different implant materials were assessed (Ti6Al4V, X2CrNiMo18) and four different surface properties were evaluated: (a) plasma pretreated and collagen-I coated implant materials; (b) collagen-I dip-coated without plasma pretreatment; (c) plasma treated but not collagen-I coated; (d) standard implant materials served as control. The different coating characteristics were analyzed by scanning electron microscopy (SEM). For adhesion and viability tests calcein-AM staining of the cells and Alamar blue assays were performed. The quantitative analysis was conducted by computer assisted microfluorophotography and spectrometer measurements. SEM analysis revealed that stable collagen-I coatings could not be achieved on the dip-coated steel and titanium alloys. Only due to pretreatment with low-pressure gas plasma a robust deposition of collagen I on the surface could be achieved. The cell viability and cell attachment rate on the plasma pretreated, collagen coated surfaces was significantly (p < 0.017) increased compared to the non coated surfaces. Gas plasma treatment is a feasible method for the deposition of proteins on metal implant materials resulting in an improved biocompatibility in vitro. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32672DOI Listing

Publication Analysis

Top Keywords

implant materials
20
gas plasma
12
plasma
8
metal implant
8
low-pressure gas
8
plasma treatment
8
plasma pretreated
8
collagen-i coated
8
coated surfaces
8
implant
5

Similar Publications

Background: Patients with a left ventricular ejection fraction ≤ 35% are at increased risk of sudden cardiac death (SCD) within the first months after a myocardial infarction (MI). The wearable cardioverter defibrillator (WCD) is an established, safe and effective solution which can protect patients from SCD during the first months after an MI, when the risk of SCD is at its peak. This study aimed to evaluate the cost-effectiveness of WCD combined with guideline-directed medical therapy (GDMT) compared to GDMT alone, after MI in the English National Health Service (NHS).

View Article and Find Full Text PDF

To investigate the effect of the sizes of osteon-like concentric microgroove structures on the osteoclastic differentiation of macrophages on titanium surfaces, and to provide reference for the surface modification of implants. The silicon wafers sputtered with titanium were selected as the control group (smooth surface specimens) and four concentric groups (concentric circles with the maximum diameter of 200 μ m, the minimum diameter of 20 μ m, the spacing of concentric circles of 10 or 30 μm, the width of microgrooves of 10 or 30 μm, and the depth of microgrooves of 5 or 10 μm) specimens (the total sample size in each group was 27). The width of microgrooves of C10-5 and C10-10 groups was 10 μm, the depth was 5 and 10 μm, and the width of microgrooves of C30-5 and C30-10 groups was 30 μ m, the depth was 5 and 10 μ m, respectively.

View Article and Find Full Text PDF

Background: Effective management of postsurgical pain following arthroplasty remains a challenge, lacking a definitive gold standard. As most knee and hip arthroplasties are cemented or hybrid, we used the property of bone cement as a drug carrier and added powdered local anesthetics (lidocaine hydrochloride and bupivacaine hydrochloride) to the polymethylmethacrylate (PMMA) as analgesics. However, the addition of drugs to bone cement may compromise its mechanical properties, necessitating a thorough analysis.

View Article and Find Full Text PDF

Total hip arthroplasty (THA) is a very successful operation. Once the problem of implant fixation was solved with the use of bone cement, the next development steps focused on improving the bearing. Weber, a Swiss surgeon, introduced the first modular heads in THA.

View Article and Find Full Text PDF

Background: Periprosthetic joint infections (PJIs) are a major complication of total joint replacement surgeries. This study investigated the enhancement of mechanical properties and antibiotic release in ultra-high molecular weight polyethylene (UHMWPE) through the encapsulation of submicron gentamicin sulfate (GS) particles, addressing the critical need for improved implant materials in orthopaedic surgery, particularly in managing PJIs.

Methods: The present study involved embedding submicron GS particles into UHMWPE flakes at concentrations of 2% to 10% by weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!