Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys.

Amino Acids

Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Published: July 2010

Synthetic lipopeptides have demonstrated great potential as a vaccine strategy for eliciting cellular and humoral immunity. One of the most potent lipid moieties used is S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Pam2Cys binds to and activates dendritic cells by engagement of Toll like receptor 2 (TLR 2). In this study, we have investigated the structural requirement of the agonist activity of Pam2Cys by varying the three structural elements of the core structure S-(2,3-dihydroxypropyl)-cysteine namely (1) the alpha-amino group of the cysteine residue (2) the sulphur atom of the cysteine residue and (3) the 2,3-dihydroxypropyl moiety. Four novel analogues of Pam2Cys were made and each of these analogues were incorporated into vaccine constructs and examined for immunogenicity. Our results demonstrate that (1) the potency of the peptide vaccine is least affected by removal of the amino group (2) substitution of the sulphur atom with an amide bond leads to significant reduction of biological activity (3) removal of the amino group and at the same time substitution of the sulphur with an amide bond significantly decreases the biological activity (4) in the two analogues in which the sulphur atom is replaced with an amide bond the analogue containing the 1,3-dihydroxypropyl moiety demonstrates higher activity than the one which contains 2,3-dihydroxypropyl. In conclusion, the results demonstrate strict structural requirements for agonist activity of the TLR2 ligand Pam2Cys.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-009-0463-0DOI Listing

Publication Analysis

Top Keywords

agonist activity
12
sulphur atom
12
amide bond
12
structural requirement
8
requirement agonist
8
activity tlr2
8
tlr2 ligand
8
ligand pam2cys
8
cysteine residue
8
removal amino
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!