A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assisted assignment of ligands corresponding to unknown electron density. | LitMetric

Assisted assignment of ligands corresponding to unknown electron density.

J Struct Funct Genomics

Midwest Center for Structural Genomics (MCSG), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA.

Published: March 2010

A semi-automated computational procedure to assist in the identification of bound ligands from unknown electron density has been developed. The atomic surface surrounding the density blob is compared to a library of three-dimensional ligand binding surfaces extracted from the Protein Data Bank (PDB). Ligands corresponding to surfaces which share physicochemical texture and geometric shape similarities are considered for assignment. The method is benchmarked against a set of well represented ligands from the PDB, in which we show that we can identify the correct ligand based on the corresponding binding surface. Finally, we apply the method during model building and refinement stages from structural genomics targets in which unknown density blobs were discovered. A semi-automated computational method is described which aims to assist crystallographers with assigning the identity of a ligand corresponding to unknown electron density. Using shape and physicochemical similarity assessments between the protein surface surrounding the density and a database of known ligand binding surfaces, a plausible list of candidate ligands are identified for consideration. The method is validated against highly observed ligands from the Protein Data Bank and results are shown from its use in a high-throughput structural genomics pipeline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885970PMC
http://dx.doi.org/10.1007/s10969-010-9078-7DOI Listing

Publication Analysis

Top Keywords

unknown electron
12
electron density
12
ligands corresponding
8
corresponding unknown
8
semi-automated computational
8
surface surrounding
8
surrounding density
8
ligand binding
8
binding surfaces
8
protein data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!