New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems.

Ecotoxicology

Laboratorio de Limnología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, C1428EHA, Buenos Aires, Argentina.

Published: April 2010

Argentina is the second largest world producer of soybeans (after the USA) and along with the increase in planted surface and production in the country, glyphosate consumption has grown in the same way. We investigated the effects of Roundup (glyphosate formulation) on the periphyton colonization. The experiment was carried out over 42 days in ten outdoor mesocosms of different typology: "clear" waters with aquatic macrophytes and/or metaphyton and "turbid" waters with great occurrence of phytoplankton or suspended inorganic matter. The herbicide was added at 8 mg L(-1) of the active ingredient (glyphosate) in five mesocosms while five were left as controls (without Roundup addition). The estimate of the dissipation rate (k) of glyphosate showed a half-life value of 4.2 days. Total phosphorus significantly increased in treated mesocosms due to Roundup degradation what favored eutrophication process. Roundup produced a clear delay in periphytic colonization in treated mesocosms and values of the periphytic mass variables (dry weight, ash-free dry weight and chlorophyll a) were always higher in control mesocosms. Despite the mortality of algae, mainly diatoms, cyanobacteria was favored in treated mesocosms. It was observed that glyphosate produced a long term shift in the typology of mesocosms, "clear" turning to "turbid", which is consistent with the regional trend in shallow lakes in the Pampa plain of Argentina. Based on our findings it is clear that agricultural practices that involve the use of herbicides such as Roundup affect non-target organisms and the water quality, modifying the structure and functionality of freshwater ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-009-0446-7DOI Listing

Publication Analysis

Top Keywords

treated mesocosms
12
roundup glyphosate
8
glyphosate formulation
8
water quality
8
freshwater ecosystems
8
dry weight
8
mesocosms
7
glyphosate
6
roundup
5
evidences roundup
4

Similar Publications

Evaluating the tolerance of harmful algal bloom communities to copper.

Environ Pollut

January 2025

School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL. Electronic address:

Harmful algal blooms (HABs) cause severe economic and environmental impacts, including hypoxic events and the production of toxins and off-flavor compounds. Chemical treatments, such as copper sulfate pentahydrate (CuSO·5HO), are often used to mitigate the damaging effects of algal blooms. However, treatment effects are usually short-lived leading to waterbodies requiring repeated CuSO·5HO applications to control persistent algal blooms, particularly in highly eutrophic systems, such as aquaculture ponds or small agricultural impoundments.

View Article and Find Full Text PDF

Utility of integrated papyrus-bivalve for bioremediation of aquaculture wastewater.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.

Aquaculture generates substantial amount of residual feeds and faecal matter that accumulate in the culture environment and pollute effluent-receiving water, diminishing its ecological functioning. To devise means of treating nutrient-rich aquaculture wastewater, the efficiency of integrated papyrus-bivalve mesocosms in removing nutrients was evaluated. The mesocosms were fed on water (6600 L) from one brood-stock pond and allowed to settle for 2 weeks.

View Article and Find Full Text PDF

A combination cyanobacterial treatment approach using hydrogen peroxide and L-lysine successfully improved the removal efficiency of toxic cyanobacteria.

J Environ Manage

January 2025

Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA; School of Geosciences, University of South Florida, Tampa, FL, 33620, USA. Electronic address:

Harmful cyanobacterial blooms have been increasing globally, introducing new challenges for protecting aquatic ecosystems and human health. A combined algaecide treatment, similar to combination antibiotic therapy, may more rapidly and effectively remove cyanobacteria by broad targeting of different growth mechanisms, reducing the recovery of bloom-forming cyanobacteria. To confirm this hypothesis, hydrogen peroxide (10.

View Article and Find Full Text PDF

Influence of in situ biochar capping on microbial dynamics and ammonia nitrogen release in sediment.

J Environ Manage

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

To study the influence of in situ biochar (BC) capping technique on the release of ammonia nitrogen (NH-N) from sediments, a field mesocosm experiment was conducted in Baiyangdian Lake (BYDL), a critical water body often referred to as the "kidney of North China" where sediment pollution poses a significant threat to water quality. This study also assessed the impact of BC on sediment microorganisms. The results showed that the NH-N concentration in the overlying water of the BC-treated mesocosms was the lowest among four treatments, decreasing to 0.

View Article and Find Full Text PDF

The Athabasca oil sands region of Alberta, Canada contains one of the world's largest unconventional petroleum deposits. There is concern about residual contaminants where tailings are integrated during reclamation and the related adverse effects this may have. Some of the primary toxic organic contaminants in oilsands tailings are naphthenic acid fraction compounds (NAFCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!