We present a simple method for simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films by measuring the film refractive indices as a function of temperature (dn/dT). Usually, such dn/dT value is considered as the thermo-optic coefficient. However, in the thin film systems, the measured dn/dT values result from both the thermo-optic and stress-optic effects. To demonstrate the stress-induced effects, the dn/dT values have been investigated for two different polymers: benzocyclobutene (high film stress) and epoxy 3505 (negligible film stress), using a prism coupler technique. The finite element method has been used so as to predict the stresses in the polymer film and, by combining them with the experimental dn/dT values, the individual thermo-optic and stress-optic coefficients have been determined. We found that the obtained thermo-optic coefficient is significantly different than the measured dn/dT values. The method is generic in nature and can thus be applied to a wide range of polymer waveguide materials.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.49.000403DOI Listing

Publication Analysis

Top Keywords

thermo-optic stress-optic
16
dn/dt values
16
stress-optic coefficients
12
simultaneous measurement
8
measurement thermo-optic
8
coefficients polymer
8
polymer thin
8
thin films
8
prism coupler
8
coupler technique
8

Similar Publications

Soft Biomimetic Fiber-Optic Tactile Sensors Capable of Discriminating Temperature and Pressure.

ACS Appl Mater Interfaces

November 2023

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

Tactile sensors with high softness and multisensory functions are highly desirable for applications in humanoid robotics, smart prosthetics, and human-machine interfaces. Here, we report a soft biomimetic fiber-optic tactile (SBFT) sensor that offers skin-like tactile sensing abilities to perceive and discriminate temperature and pressure. The SBFT sensor is fabricated by encapsulating a macrobent fiber Bragg grating (FBG) in an elastomeric droplet-shaped structure that results in two optical resonances associated with the FBG and excited whispering gallery modes (WGMs) propagating along the bent region.

View Article and Find Full Text PDF

We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform.

View Article and Find Full Text PDF

We present a simple method for simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films by measuring the film refractive indices as a function of temperature (dn/dT). Usually, such dn/dT value is considered as the thermo-optic coefficient. However, in the thin film systems, the measured dn/dT values result from both the thermo-optic and stress-optic effects.

View Article and Find Full Text PDF

To assess the suitability of bismuth germanate as an electro-optic material for high precision applications, we have confirmed and extended previous data on its refractive index, electro-optic tensor element r(41), and thermal expansion coefficient. In addition, we have measured the thermo-optic coefficient dn/dT, the temperature dependence of the electro-optic coefficient, and the stress-optic tensor elements. From the stress-optic tensor elements and previously published data, we have computed the strain-optic tensor elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!