Impaired stretch modulation in potentially lethal cardiac sodium channel mutants.

Channels (Austin)

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.

Published: July 2010

The presence of two slowly inactivating mutants of the cardiac sodium channel (hNa(V)1.5), R1623Q and R1626P, associate with sporadic Long-QT3 (LQT3) syndrome, and may contribute to ventricular tachyarrhythmias and/or lethal ventricular disturbances. Cardiac mechanoelectric feedback is considered a factor in such sporadic arrhythmias. Since stretch and shear forces modulate hNa(V)1.5 gating, detailed electrophysiological study of LQT-Na(V)1.5 mutant channel alpha subunit(s) might provide insights. We compared recombinant R1623Q and WT currents in control vs. stretched membrane of cell-attached patches of Xenopus oocytes. Macroscopic current was monitored before, during, and after stretch induced by pipette suction. In either mutant Na(+) channel, peak current at small depolarizations could be more than doubled by stretch. As in WT, R1623Q showed reversible and stretch intensity dependent acceleration of current onset and decay at all voltages, with kinetic coupling between these two processes retained during stretch. These two Na(V)1.5 channel alpha subunits differed in the absolute extent of kinetic acceleration for a given stretch intensity; over a range of intensities, R1623Q inactivation speed increased significantly less than did WT. The LQT3 mutant R1626P also retained its kinetic coupling during stretch. Whereas WT stretch-difference currents (I(Na)(V,t) without stretch minus I(Na)(V,t) with stretch) were mostly inhibitory (equivalent to outward current), they were substantially (R1623Q) or entirely (R1626P) excitatory for the LQT3 mutants. If stretch-modulated Na(V)1.5 current (i.e., brief excitation followed by accelerated current decay) routinely contributes to cardiac mechanoelectric feedback, then during hemodynamic load variations, the abnormal stretch-modulated components of R1623Q and R1626P current could be pro-arrhythmic.

Download full-text PDF

Source
http://dx.doi.org/10.4161/chan.4.1.10260DOI Listing

Publication Analysis

Top Keywords

stretch
9
cardiac sodium
8
sodium channel
8
r1623q r1626p
8
cardiac mechanoelectric
8
mechanoelectric feedback
8
channel alpha
8
alpha subunits
8
stretch intensity
8
kinetic coupling
8

Similar Publications

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Background: Subacromial impingement syndrome (SIS) is a common cause of shoulder pain and dysfunction. Modified posterior shoulder stretching exercises have been proposed as a treatment method aimed at improving shoulder function and reducing pain in patients with SIS. However, the efficacy of these exercises remains controversial, necessitating a systematic meta-analysis to comprehensively evaluate their effectiveness.

View Article and Find Full Text PDF

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

HOP-graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP-graphene, utilizing molecular dynamics simulations. The results revealed that Young's modulus of HOP-graphene in the armchair direction is 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!