Perinatal energy metabolism with reference to IUGR & SGA: studies in pregnant women & newborn infants.

Indian J Med Res

Department of Women's & Children's Health, Uppsala University, Uppsala, Sweden.

Published: November 2009

Glucose is the most important fetal energy substrate. During the third trimester increased maternal glucose production and insulin resistance improves fetal glucose availability. Maternal malnutrition, chronic disease and/or placental dysfunction can disturb glucose delivery, resulting in intrauterine growth restriction (IUGR) and an infant born small for gestational age (SGA). Hypoglycaemia is a problem frequently occurring in infants born SGA; they are also at long-term risk of developing insulin resistance. In the studies presented, energy substrate production was investigated using stable isotope dilution technique, in normal pregnancies and pregnancies complicated by intrauterine growth restriction (IUGR). In addition energy substrate production in infants born SGA was studied on their first day of life. We found that late pregnancy was associated with an almost twofold increase in rate of lipolysis. This provides substrates for maternal energy metabolism, sparing glucose for the fetus. Even though glucose production was comparable in the two groups of pregnant women, those with IUGR had a lower rate of lipolysis. A reduced supply of energy substrates could be one factor underlying IUGR. In spite of the insulin resistance of late gestation, insulin still had a regulatory role in energy substrate production in the women with normal pregnancies, but not in those with IUGR. Although infants born SGA have limited energy stores, we demonstrated that they are capable of both lipolysis and glucose production. Data on insulin and IGFBP-1 in the SGA infants indicate that insulin sensitivity is increased peripherally but reduced in the liver.

Download full-text PDF

Source

Publication Analysis

Top Keywords

energy substrate
16
glucose production
12
insulin resistance
12
infants born
12
born sga
12
substrate production
12
energy metabolism
8
pregnant women
8
intrauterine growth
8
growth restriction
8

Similar Publications

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.

View Article and Find Full Text PDF

Due to the larger pore structure, the macroporous material can be used as the immobilized carrier to not only increase the enzyme loading capacity, but also facilitate the transfer of reactants and substrates. Based on this, a three-dimensional ordered macro-microporous ZIF-8 (SOM-ZIF-8) was prepared using three-dimensional ordered stacked polystyrene spheres as the hard template. The morphology and structure of SOM-ZIF-8 were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and so on.

View Article and Find Full Text PDF

L-Amino acid transporters (LATs) play a key role in a wide range of physiological processes. Defects in LATs can lead to neurological disorders and aminoacidurias, while the overexpression of these transporters is related to cancer. BasC is a bacterial LAT transporter with an APC fold.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!