A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current. | LitMetric

Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current.

Am J Physiol Cell Physiol

Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA.

Published: April 2010

Reactive oxygen species (ROS), particularly superoxide (O(2)(.-)), have been identified as key signaling intermediates in ANG II-induced neuronal activation and sympathoexcitation associated with cardiovascular diseases, such as hypertension and heart failure. Studies of the central nervous system have identified NADPH oxidase as a primary source of O(2)(.-) in ANG II-stimulated neurons; however, additional sources of O(2)(.-), including mitochondria, have been mostly overlooked. Here, we tested the hypothesis that ANG II increases mitochondria-produced O(2)(.-) in neurons and that increased scavenging of mitochondria-produced O(2)(.-) attenuates ANG II-dependent intraneuronal signaling. Stimulation of catecholaminergic (CATH.a) neurons with ANG II (100 nM) increased mitochondria-localized O(2)(.-) levels, as measured by MitoSOX Red fluorescence. This response was significantly attenuated in neurons overexpressing the mitochondria-targeted O(2)(.-)-scavenging enzyme Mn-SOD. To examine the biological significance of the ANG II-mediated increase in mitochondria-produced O(2)(.-), we used the whole cell configuration of the patch-clamp technique to record the well-characterized ANG II-induced inhibition of voltage-gated K(+) current (I(Kv)) in neurons. Adenovirus-mediated Mn-SOD overexpression or pretreatment with the cell-permeable antioxidant tempol (1 mM) significantly attenuated ANG II-induced inhibition of I(Kv). In contrast, pretreatment with extracellular SOD protein (400 U/ml) had no effect. Mn-SOD overexpression also inhibited ANG II-induced activation of Ca(2+)/calmodulin kinase II, a redox-sensitive protein known to modulate I(Kv). These data indicate that ANG II increases mitochondrial O(2)(.-), which mediates, at least in part, ANG II-induced activation of Ca(2+)/calmodulin kinase II and inhibition of I(Kv) in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115892PMC
http://dx.doi.org/10.1152/ajpcell.00313.2009DOI Listing

Publication Analysis

Top Keywords

ang ii-induced
20
ii-induced inhibition
12
mitochondria-produced o2-
12
ang
11
o2-
8
ang increases
8
ikv neurons
8
mn-sod overexpression
8
inhibition ikv
8
ii-induced activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!