Using a hybrid computational approach, we simulate the behavior of nanoparticle-filled microcapsules that are propelled by an imposed shear to move over a substrate, which encompasses a microscopic crack. When the microcapsules become localized in the crack, the nanoparticles can penetrate the capsule's shell to bind to and fill the damaged region. Initially focusing on a simple shear flow, we isolate conditions where the microcapsules become arrested in the cracks and those where the capsules enter the cracks for a finite time but are driven to leave this region by the imposed flow. We also characterize the particle deposition process for these two scenarios, showing that the deposition is greater for the arrested capsules. We then determine the effect of utilizing a pulsatile shear flow and show that this flow field can lead to an effective "repair-and-go" system where the microcarriers not only deliver a high volume fraction of particles into the crack but also leave the fissure and, thus, can potentially repair additional damage within the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn901296y | DOI Listing |
Langmuir
December 2013
Complex Materials, Department of Materials, ETH Zurich , 8093 Zurich, Switzerland.
Capsules with a shell made out of nanoparticles, so-called colloidosomes, are very interesting for controlled encapsulation and release because of their selectively permeable shell, their mechanical stability, and the possibility to make them from many materials. Here, we report the creation of complex colloidosomes that can release encapsulated cargo on-demand in single or multiple release events. Unprecedented on-demand, multiple release is achieved by incorporating functional nanoparticles within the colloidosome hollow core.
View Article and Find Full Text PDFACS Nano
February 2010
Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Using a hybrid computational approach, we simulate the behavior of nanoparticle-filled microcapsules that are propelled by an imposed shear to move over a substrate, which encompasses a microscopic crack. When the microcapsules become localized in the crack, the nanoparticles can penetrate the capsule's shell to bind to and fill the damaged region. Initially focusing on a simple shear flow, we isolate conditions where the microcapsules become arrested in the cracks and those where the capsules enter the cracks for a finite time but are driven to leave this region by the imposed flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!