The synthetic double-stranded RNA polyriboinocinic polyribocytidylic acid [poly(I:C)] is a potent mucosal adjuvant in mice immunized intranasally with an inactivated influenza vaccine. In an attempt, to increase the effectiveness of a nasal poly(I:C)-combined vaccine, the effect of zymosan, a cell wall extract from Saccharomyces cervisiae was investigated, on the adjuvant activity of poly(I:C) in BALB/c mice. The addition of zymosan (10 microg) as an adjuvant in mice which were immunized intranasally with a poly(I:C) (1-5 microg)-combined vaccine (1 microg) enhanced the ability of the mice to mount an effective immune response to a lethal dose of influenza virus, and resulted in a synergistic increase in secretory IgA and serum IgG antibody levels. To define the mechanism by which zymosan enhanced the adjuvant activity of poly(I:C), bone marrow-derived dendritic cells (BM-DCs) were cultured in the presence of poly(I:C) and/or zymosan. There was a synergistic increase in cytokine production (TNF-alpha, IL-6, IL-10, and IFN-beta) in BM-DCs, together with an increase in the expression of co-stimulatory molecules (CD86 and CD40) in response to co-treatment with poly(I:C) and zymosan. This synergistic effect on cytokine production was mimicked by co-treatment with poly(I:C) and a Toll-like receptor 2 (TLR2) ligand, which represented one of the components of zymosan. The results of the current study suggest that one of the mechanisms by which zymosan enhances the adjuvant activity of poly(I:C) is through increased cytokine production by DCs involving the synergistic activation of poly(I:C)-induced TLR3- and zymosan-induced TLR2-mediated signaling pathways. J. Med. Virol. 82:476-484, 2010. (c) 2010 Wiley-Liss, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.21694DOI Listing

Publication Analysis

Top Keywords

adjuvant activity
16
activity polyic
16
cytokine production
12
zymosan
8
zymosan enhances
8
mucosal adjuvant
8
polyic
8
influenza vaccine
8
adjuvant mice
8
mice immunized
8

Similar Publications

BCG remains the only licensed vaccine for tuberculosis (TB), but its efficacy wanes over time. Subunit vaccines, aim to improve BCG immunity and protection, by inducing responses to a few mycobacterial antigens delivered with a specific platform. Since the platform shapes the immune response induced, selecting the right platform has been challenging due to the lack of immune correlates of protection.

View Article and Find Full Text PDF

Ultrasound-triggered drug-loaded nanobubbles for enhanced T cell recruitment in cancer chemoimmunotherapy.

Biomaterials

January 2025

Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China. Electronic address:

Chemotherapy combined with immunotherapy is a highly promising approach for treating tumors. However, chemotherapeutic drugs often fail to accumulate effectively at the tumor site after systemic administration and they lack sufficient immunogenicity to activate adaptive immunity, making an effective T-cell immune response within the tumor microenvironment difficult to achieve. Here, this work developed drug-loaded nanobubbles (DTX-R837@NBs) that encapsulate the chemotherapy drug docetaxel and the immune adjuvant R837 via a thin-film hydration method.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.

View Article and Find Full Text PDF

Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!