Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/10_2009_18 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, United Kingdom.
The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.
View Article and Find Full Text PDFBio Protoc
January 2025
Biochemistry Department, Western University, London, Canada.
Chloroplast genomes present an alternative strategy for large-scale engineering of photosynthetic eukaryotes. Prior to our work, the chloroplast genomes of (204 kb) and (140 kb) had been cloned using bacterial and yeast artificial chromosome (BAC/YAC) libraries, respectively. These methods lack design flexibility as they are reliant upon the random capture of genomic fragments during BAC/YAC library creation; additionally, both demonstrated a low efficiency (≤ 10%) for correct assembly of the genome in yeast.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Life Science, Bar Ilan University, Ramat Gan, Israel. Electronic address:
Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125001 Haryana India.
Present research focused on biotransformation of paneer whey into a functional fermented product using kefir culture. Out of 9 formulations (S-1 to S-9) tried; S-8, obtained by fermenting FOS (1%) supplemented paneer whey and adding 8% refined sugar, was identified as the most acceptable product. Nutritional analysis revealed the following as per 100 g of product: 44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!