Purpose: Development of efficient in vivo delivery nanodevices remains a major challenge to achieve clinical application of siRNA. The present study refers to the conception of core-shell nanoparticles aiming to make possible intravenous administration of chemically unmodified siRNA oriented towards the junction oncogene of the papillary thyroid carcinoma.

Methods: Nanoparticles were prepared by redox radical emulsion polymerization of isobutylcyanoacrylate and isohexylcyanoacrylate with chitosan. The loading of the nanoparticles with siRNA was achieved by adsorption. The biological activity of the siRNA-loaded nanoparticles was assessed on mice bearing a papillary thyroid carcinoma after intratumoral and intravenous administration.

Results: Chitosan-coated nanoparticles with a diameter of 60 nm were obtained by adding 3% pluronic in the preparation medium. siRNA were associated with the nanoparticles by surface adsorption. In vivo, the antisense siRNA associated with the nanoparticles lead to a strong antitumoral activity. The tumor growth was almost stopped after intravenous injection of the antisense siRNA-loaded nanoparticles, while in all control experiments, the tumor size was increased by at least 10 times.

Conclusion: This work showed that poly(alkylcyanoacrylate) nanoparticles coated with chitosan are suitable carriers to achieve in vivo delivery of active siRNA to tumor including after systemic administration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-009-0043-8DOI Listing

Publication Analysis

Top Keywords

nanoparticles
9
vivo delivery
8
papillary thyroid
8
sirna-loaded nanoparticles
8
sirna associated
8
associated nanoparticles
8
sirna
7
core-shell nanoparticules
4
intravenous
4
nanoparticules intravenous
4

Similar Publications

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Drug delivery systems loaded with plant-derived natural products for dental caries prevention and treatment.

J Mater Chem B

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.

View Article and Find Full Text PDF

Introduction Complex interactions between cariogenic bacteria and host factors modulate dental caries. , a gram-positive facultative anaerobe plays a prominent role in the initiation of caries. The ability of to adhere to salivary enamel pellicle results in an acidic local habitat for the organism.

View Article and Find Full Text PDF

Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!