Exposure to acute intermittent hypoxia (AIH) evokes persistent increase in respiratory activity that lasts up to 60 min after hypoxic episodes have ceased. This persistent increase in phrenic nerve activity (PNA) is known as phrenic long-term facilitation (LTF). AIH-induced phrenic LTF in anesthetized rats is serotonin dependant. The present study was performed to determine whether microinjection of methysergide (4 mM, 20 +/- 5 nl), a broad spectrum 5-HT receptor antagonist, into the caudal raphe nuclei influences phrenic LTF. Peak integrated PNA and respiratory frequency were recorded at 15, 30, and 60 min after five 3-min episodes of normocapnic hypoxia in urethane-anesthetized, vagotomized, paralyzed and ventilated male Sprague-Dawley rats. In control animals, phrenic nerve amplitude was elevated 66.7 +/- 8.6% from baseline 1 h after episodic hypoxia, indicating phrenic LTF. Experimental microinjections of methysergide prior to AIH exposure attenuated phrenic LTF (amplitude increase 2.62 +/- 2.9% over baseline). We conclude that methysergide microinjections into the caudal raphe region attenuated phrenic LTF induced by AIH, indicating involvement of 5-HT receptor activation at a supraspinal level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-010-2161-2 | DOI Listing |
Front Physiol
February 2023
Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH.
View Article and Find Full Text PDFJ Physiol
May 2022
Breathing Research and Therapeutics Centre, University of Florida, Gainesville, FL, USA.
Acute intermittent hypoxia (AIH) elicits long-term facilitation (LTF) of respiration. Although LTF is observed when CO is elevated during AIH in awake humans, the influence of CO on corticospinal respiratory motor plasticity is unknown. Thus, we tested the hypotheses that acute intermittent hypercapnic-hypoxia (AIHH): (1) enhances cortico-phrenic neurotransmission (reflecting volitional respiratory control); and (2) elicits ventilatory LTF (reflecting automatic respiratory control).
View Article and Find Full Text PDFJ Physiol
August 2021
Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
Front Physiol
February 2021
Department of Physical Therapy, McKnight Brain Institute, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, United States.
Moderate acute intermittent hypoxia (mAIH) elicits a progressive increase in phrenic motor output lasting hours post-mAIH, a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF). mAIH-induced pLTF is initiated by activation of spinally-projecting raphe serotonergic neurons during hypoxia and subsequent serotonin release near phrenic motor neurons. Since raphe serotonergic neurons are also sensitive to pH and CO, the prevailing arterial CO pressure (PaCO) may modulate their activity (and serotonin release) during hypoxic episodes.
View Article and Find Full Text PDFExp Neurol
May 2021
Breathing Research and Therapeutics Centre, Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brooks Rehabilitation, Jacksonville, FL, USA.
Acute intermittent hypoxia (AIH) is a strategy to improve motor output in humans with neuromotor impairment. A single AIH session increases the amplitude of motor evoked potentials (MEP) in a finger muscle (first dorsal interosseous), demonstrating enhanced corticospinal neurotransmission. Since AIH elicits phrenic/diaphragm long-term facilitation (LTF) in rodent models, we tested the hypothesis that AIH augments diaphragm MEPs in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!