The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans.

Drug Metab Dispos

Department of Drug Metabolism, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.

Published: April 2010

The pharmacokinetics and metabolism of linagliptin (BI1356, 8-(3R-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione) were investigated in healthy volunteers. The 10- and 5-mg (14)C-labeled drug was administered orally or intravenously, respectively. Fecal excretion was the dominant excretion pathway with 84.7% (p.o.) and 58.2% (i.v.) of the dose. Renal excretion accounted for 5.4% (p.o.) and 30.8% (i.v.) of the dose. Unchanged linagliptin was the most abundant radioactive species in all matrices investigated. The exposure (area under the curve 0-24 h) to the parent compound in plasma accounted for 191 nM . h (p.o.) and 356 nM . h (i.v.), respectively. The main metabolite 7-but-2-ynyl-8-(3S-hydroxy-piperidin-1-yl)-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (CD1790) was observed with >10% of parent compound systemic exposure after oral administration. The metabolite was identified as S-3-hydroxypiperidinly derivative of linagliptin. Experiments that included stable-labeled isotope techniques indicated that CD1790 was formed by a two-step mechanism via the ketone 7-but-2-yn-1-yl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-8-(3-oxopiperidin-1-yl)-3,7-dihydro-1H-purine-2,6-dione (CD10604). The initial ketone formation was CYP3A4-dependent and rate-limiting for the overall reaction to CD1790. Aldo-keto reductases with minor contribution of carbonyl reductases were involved in the subsequent stereoselective reduction of CD10604 to CD1790. The antipodes of linagliptin and CD1790 were not observed with adequate enantioselective liquid chromatography-tandem mass spectrometry methods. Other minor metabolites were identified by mass spectrometry and NMR investigations. However, it was concluded that the metabolites of linagliptin only play a minor role in the overall disposition and elimination of linagliptin.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.109.031476DOI Listing

Publication Analysis

Top Keywords

parent compound
8
cd1790 observed
8
mass spectrometry
8
linagliptin
7
cd1790
5
metabolism disposition
4
disposition oral
4
oral dipeptidyl
4
dipeptidyl peptidase-4
4
peptidase-4 inhibitor
4

Similar Publications

Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by A-3.

J Agric Food Chem

January 2025

Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain A-3 was isolated for the first time which can degrade DIF efficiently.

View Article and Find Full Text PDF

This work describes the synthesis, characterization, and antibacterial properties of four bile acid-triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid-triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates and show high activity against (ATCC25922), with IC values of 2.

View Article and Find Full Text PDF

Introduction: Glycerol-3-phosphate dehydrogenase 1 (GPD1) deficiency is an autosomal recessive disorder causing hypertriglyceridemia, hepatomegaly, fatty liver, and hepatic fibrosis in infancy. It is an under-recognized cause of pediatric steatotic liver disease (SLD) with only 36 cases reported worldwide.

Method: We analyzed the clinical profile of our five cases diagnosed by exome sequencing (ES) and reviewed the published cases till December 2023 using PubMed search.

View Article and Find Full Text PDF

This study explores the concept of molecular orbital tuning for organic semiconductors through the use of '-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene ( and ). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives ( and ), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!