Motile cilia are unique multimotor systems that display coordination and periodicity while imparting forces to biological fluids. They play important roles in normal physiology, and ciliopathies are implicated in a growing number of human diseases. In this work we measure the response of individual human airway cilia to calibrated forces transmitted via spot-labeled magnetic microbeads. Cilia respond to applied forces by 1), a reduction in beat amplitude (up to an 85% reduction by 160-170 pN of force); 2), a decreased tip velocity proportionate to applied force; and 3), no significant change in beat frequency. Tip velocity reduction occurred in each beat direction, independently of the direction of applied force, indicating that the cilium is "driven" in both directions at all times. By applying a quasistatic force model, we deduce that axoneme stiffness is dominated by the rigidity of the microtubules, and that cilia can exert 62 +/- 18 pN of force at the tip via the generation of 5.6 +/- 1.6 pN/dynein head.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800978PMC
http://dx.doi.org/10.1016/j.bpj.2009.09.048DOI Listing

Publication Analysis

Top Keywords

force generation
8
applied force
8
force
6
cilia
5
generation dynamics
4
dynamics individual
4
individual cilia
4
cilia external
4
external loading
4
loading motile
4

Similar Publications

N staging systems are paramount clinical features for colorectal cancer (CRC). In N1 stage (N1) CRC, patients present with a limited number of metastatic lymph nodes, yet their prognoses vary widely. The tumor invasion proportion of lymph nodes (TIPLN) has gained attention, but its prognostic value in N1 CRC remains unclear.

View Article and Find Full Text PDF

An Open-source Python Tool for Traction Force Microscopy on Micropatterned Substrates.

Bio Protoc

January 2025

Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.

Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) is a rare condition resulting from damage to the optic nerve due to craniofacial trauma. It can present as direct or indirect injuries, with mechanisms ranging from mechanical disruption by fractures in direct TON to transmitted forces causing shearing and ischemia in indirect TON. These injuries often lead to significant visual impairment or complete vision loss, requiring timely diagnosis and intervention.

View Article and Find Full Text PDF

Classifying synoptic patterns driving tornadic storms and associated spatial trends in the United States.

NPJ Clim Atmos Sci

January 2025

Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN USA.

Severe convective storms and tornadoes rank among nature's most hazardous phenomena, inflicting significant property damage and casualties. Near-surface weather conditions are closely governed by large-scale synoptic patterns. It is crucial to delve into the involved multiscale associations to understand tornado potential in response to climate change.

View Article and Find Full Text PDF

Data on full stationary wave-field measurement of a suspended steel plate punctually loaded.

Data Brief

February 2025

Institut Camille Jordan, UMR-CNRS 5208, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134, Écully, France.

The dataset presented contains the experimental structural response, in the frequency domain, of a suspended steel plate to a point force excitation. The plate is excited by a mechanical point force generated by a Brüel & kJær shaker with a white noise signal input from 3.125 Hz to 2000 Hz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!