The stroke asymmetry of contact angles of water drops on tilted hydrophobic textures is demonstrated, obtained by ion track etching followed by a hydrophobic treatment. Preliminary trends concerning the advancing and receding contact angles are established, each with and against stroke direction. In rough agreement with Cassie-Baxter theory, the cosines of these four contact angles depend linearly on the wetted area fraction. The etched tracks are randomly distributed on the surface of polycarbonate disks and inclined by 30 degrees with respect to the surface, whereby the aspect ratio of individual etched cones is larger than 10. The morphology of the resulting surface is characterized by randomly shaped flat tops overhanging on one side and gradually falling off on the other side. The area fraction of the supporting tops can be calculated from the number of impinging ions per unit area and the cross section of the etched ion tracks. The top layer of the texture consists of flat, horizontal, irregularly shaped tops supporting water drops in the Cassie-Baxter state. With increasing etching time, the texture becomes increasingly clefted. To fabricate the textures, we irradiated polycarbonate with 5 x 10(7) (80)Br(7+) ions/cm(2) of 30 MeV total energy (having a range of about 20 microm in polycarbonate) at a tilt angle of 30 degrees with respect to the sample surface and etched the latent ion tracks selectively. The textured surface is made hydrophobic by carbondifluoride radicals (CF(2)) resulting from the decay of octafluorocyclobutane, C(4)F(8), in a plasma reactor. The goal of the report is to show that the tilt orientation of a superhydrophobic surface leads to advancing and receding contact angles depending on the orientation with and against the stroke direction. In addition, a rotating movement is demonstrated qualitatively by floating a rotationally asymmetric disk on an ultrasonic bath, similarly treated after an irradiation with (1.2 +/- 0.4) x 10(7) (129)Xe(27+) ions/cm(2) of 8.3 MeV/nucleon at an angle of 45 degrees, whereby the superhydrophobic side of the disk points downward to the water of the ultrasonic bath.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la904137t | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China. Electronic address:
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.
View Article and Find Full Text PDFHeliyon
December 2024
Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain.
In this research work, four distinct WO electrodes were synthesized and coated with three different polymers, known as polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) in poly(4-styrenesulfonate) (PEDOT:PSS) and polyaniline (PANi), using electropolymerization techniques. The morphological features of the samples were thoroughly characterized through Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) analyses. Additionally, contact angle measurements and electrochemical characterizations were used to verify the performance of each electrode, aiding in the prediction of their suitability for energy storage applications in lithium-ion batteries.
View Article and Find Full Text PDFRSC Adv
January 2025
Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 P. R. China
Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
Biodegradable food packaging has gained significant attention owing to environmental concerns. Chitosan (CS), a natural polysaccharide, is popular in packaging films, however, its high hydrophilicity, brittleness, and low mechanical strength limit its use. To improve CS film performance, kafirin (Kaf), glycerol (GE), and tannic acid (TA) were added to create biocomposite films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!