A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fracture behavior of straight or angulated zirconia implant abutments supporting anterior single crowns. | LitMetric

Fracture behavior of straight or angulated zirconia implant abutments supporting anterior single crowns.

Clin Oral Investig

Department of Prosthetic Dentistry and Dental Materials Sciences, Dental School and Clinics, Saarland University, Homburg, Saarland, Germany.

Published: April 2011

The aim of the study was to evaluate the influence of artificial aging on the fracture behavior of straight and angulated zirconia implant abutments (ZirDesign™; Astra Tech, Mölndal, Sweden) supporting anterior single crowns (SCs). Four different test groups (n = 8) representing anterior SCs were prepared. Groups 1 and 2 simulated a clinical situation with an ideal implant position (left central incisor) from a prosthetic point of view, which allows for the use of a straight, prefabricated zirconia abutment. Groups 3 and 4 simulated a situation with a compromised implant position, requiring an angulated (20°) abutment. OsseoSpeed™ implants (Astra Tech) 4.5 mm in diameter and 13 mm in length were used to support the abutments. The SCs (chromium cobalt alloy) were cemented with glass ionomer cement. Groups 2 and 4 were thermomechanically loaded (TCML = 1.2 × 10⁶; 10,000 × 5°/55°) and subjected to static loading until failure. Statistical analysis of force data at the fracture site was performed using nonparametric tests. All samples tested survived TCML. Artificial aging did not lead to a significant decrease in load-bearing capacity in either the groups with straight abutments or the groups with angulated abutments. The restorations that utilized angulated abutments exhibited higher fracture loads than the restorations with straight abutments (group 1, 280.25 ± 30.45 N; group 2, 268.88 ± 38.00 N; group 3, 355.00 ± 24.71 N; group 4, 320.71 ± 78.08 N). This difference in load-bearing performance between straight and angulated abutments was statistically significant (p = 0.000) only when no artificial aging was employed. The vast majority of the abutments fractured below the implant shoulder.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-009-0377-yDOI Listing

Publication Analysis

Top Keywords

straight angulated
12
artificial aging
12
angulated abutments
12
abutments
9
fracture behavior
8
behavior straight
8
angulated zirconia
8
zirconia implant
8
implant abutments
8
supporting anterior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!