Background: Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass. Chitinases are classified into two families, 18 and 19 glycoside hydrolases. In addition to a catalytic domain, which is a triosephosphate isomerase barrel, many family 18 chitinases contain another module, i.e., chitinase insertion domain. While numerous studies focus on the biological role of the catalytic domain in chitinase activity, the function of the chitinase insertion domain is not completely understood. Bioinformatics offers an important avenue in which to facilitate understanding the role of residues within the chitinase insertion domain in chitinase function.
Results: Twenty-seven chitinase insertion domain sequences, which include four experimentally determined structures and span five kingdoms, were aligned and analyzed using a modified sequence entropy parameter. Thirty-two positions with conserved residues were identified. The role of these conserved residues was explored by conducting a structural analysis of a number of holo-enzymes. Hydrogen bonding and van der Waals calculations revealed a distinct subset of four conserved residues constituting two sequence motifs that interact with oligosaccharides. The other conserved residues may be key to the structure, folding, and stability of this domain.
Conclusions: Sequence and structural studies of the chitinase insertion domains conducted within the framework of evolution identified four conserved residues which clearly interact with the substrates. Furthermore, evolutionary studies propose a link between the appearance of the chitinase insertion domain and the function of family 18 chitinases in the subfamily A.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805709 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008654 | PLOS |
Microb Pathog
October 2024
ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India. Electronic address:
Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Chitinase plays a vital role in the virulence of entomopathogenic fungi (EPF) when it infects host insects. We used gene recombination technology to express chitinase of three strains of Lecanicillium lecanii: Vl6063, V3450, and Vp28. The ORF of ChitVl6063, ChitV3450 and ChitVp28 were inserted into the fungal expression vector pBARGPE-1, which contained strong promoter and terminator, respectively, to construct a chitinase overpressing plasmid, then transformed the wild-type strain with blastospore transformation method.
View Article and Find Full Text PDFMethods Mol Biol
July 2024
Laboratory of Virology, Wageningen University, Wageningen, The Netherlands.
Baculoviruses are widely used for their potential as biological pesticide and as platform for the production of recombinant proteins and gene therapy vectors. The Baculovirus Expression Vector System (BEVS) is used for high level of expression of (multiple) proteins in insect cells. Baculovirus recombinants can be quickly constructed by transposition of the gene(s) of interest into a so-called bacmid, which is a baculovirus infectious clone maintained as single-copy, bacterial artificial chromosome in Escherichia coli.
View Article and Find Full Text PDFMicrobiol Spectr
July 2024
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Chitinases are ubiquitous enzymes involved in biomass degradation and chitin turnover in nature. (PA), an opportunistic human pathogen, expresses ChiC, a secreted glycoside hydrolase 18 family chitinase. Despite speculation about ChiC's role in PA disease pathogenesis, there is scant evidence supporting this hypothesis.
View Article and Find Full Text PDFMol Biol Rep
March 2024
Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
Background: The development of sheath blight (ShB) resistance varieties has been a challenge for scientists for long time in rice. Activation tagging is an efficient gain-of-function mutation approach to create novel phenotypes and to identify their underlying genes. In this study, a mutant population was developed employing activation tagging in the recalcitrant indica rice (Oryza sativa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!