Background: P wave dispersion is an independent predictor of atrial fibrillation. P wave dispersion is associated with inhomogeneous and discontinuous propagation of sinus impulses. The purpose of this study was to investigate P wave dispersion and transthoracic echocardiographic findings in elite women basketball players.
Methods: We recruited 27 well-trained woman athletes with a training history of many years (11.9 +/- 3.6 years). All of the athletes were elite women basketball players and they were regularly maintaining sportive activities and training programs. Twenty-six age and sex matched healthy sedentary subjects consisted of control group. The difference between P maximum and P minimum durations was defined as P wave dispersion. The echocardiographic parameters were assessed in detail in the standard left lateral decubitus position.
Results: The body height, body weight, body surface area, metabolic equivalent, maximum P wave duration and P wave dispersion were increased in the elite basketball athletes as compared with healthy sedentary subjects. On the contrary; the heart rate, ejection fraction and interventricular septum thickness in diastole were decreased in athletes. The body height (p=0.006, r=0.37), body weight (p=0.04, r=0.28), body surface area (p=0.01, r=0.33) and heart rate (p=0.01, r=-0.32) were correlated with P wave dispersion.
Conclusions: P wave dispersion was increased in elite woman basketball players as compared with healthy sedentary subjects. P wave dispersion was correlated with heart rate, body height, body weight and body surface area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803602 | PMC |
Ultrasonics
January 2025
Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland. Electronic address:
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.
View Article and Find Full Text PDFIn this paper, we propose an integrated method for windowing and matched filtering in the analog domain based on microwave photonic technology, which utilizes dispersion regulation of optical waveguide to achieve the windowing processing of broadband signals in the optical domain and the surface acoustic wave filter (SAWF) to achieve the following matched filtering processing in the radio frequency (RF) domain, thus realizing their integration processing in the analog domain. The proposed method is validated by simulation and experiment, in which the integrated processing of matched filtering and windowing in the analog domain for a linear frequency modulation (LFM) signal with a bandwidth of 1 GHz is carried out and the peak to sidelobe ratio (PSLR) of the output signal is -19.55 dB and the mainlobe width (MLW) broadens to 0.
View Article and Find Full Text PDFSmall
January 2025
College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, London, UK.
Background: Accurate estimates of personal exposure to ambient air pollution are difficult to obtain and epidemiological studies generally rely on residence-based estimates, averaged spatially and temporally, derived from monitoring networks or models. Few epidemiological studies have compared the associated health effects of personal exposure and residence-based estimates.
Objective: To evaluate the association between exposure to air pollution and cognitive function using exposure estimates taking mobility and location into account.
Small
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!