I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2009.0259 | DOI Listing |
Wiley Interdiscip Rev RNA
January 2025
Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.
Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs).
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
Engineering the local electronic structure of single atom catalysts (SACs) still remains challenging. In this study, a Ru-NiS single atom catalyst with a controlled S coordination environment, where Ru single atoms are implanted on a NiS nanoflower consisting of plenty of cross-linked nanosheets, has been developed a facile atom capture strategy. Using Density Functional Theory (DFT) calculations, it has been revealed that the fine-tuned local S coordination environment can optimize the electronic structure of Ru active sites, and reduce the energy barrier of the rate-determining step for the oxygen evolution reaction (OER), thus boosting the electrocatalytic activity, such as a low overpotential of 269 mV at 10 mA cm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.
View Article and Find Full Text PDFEnviron Sci Technol Lett
January 2025
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland.
Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!