Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2010.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!