Opioid bowel dysfunction (OBD) summarizes common adverse side effects of opiate-based management of pain. A promising therapeutic approach to prevent OBD and other opioid-related disorders of the gastrointestinal (GI) tract is the co-administration of opiates with peripherally-restricted mu-opioid receptor (MOR)-selective antagonists. The aim of this study was to investigate the selectivity and efficacy of three novel peptide antagonists: antanal-1, antanal-2, and antanal-2A at MOR in the GI tract in vitro and in vivo. The effects of the antanals on GI motility were studied in vitro, using isolated preparations of mouse ileum and colon and in vivo, by measuring colonic propulsion in mice. Additionally, in vitro stability against enzymatic degradation and blood-brain barrier (BBB) permeability using the hot plate test in mice were examined. The antanals significantly reduced the inhibitory effect of the MOR agonists endomorphin-2, morphine, and loperamide on mouse ileum and colon contractions in vitro and blocked morphine-induced decrease of colonic bead expulsion in vivo. The hot plate test in mice showed that the antagonist activity of all antanals was restricted to the periphery. Antanal-1, antanal-2, and antanal-2A are promising MOR antagonists with limited BBB permeability, which may be developed into future therapeutics of opioid-related GI dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2010.01.001DOI Listing

Publication Analysis

Top Keywords

antagonist activity
8
mu-opioid receptor
8
gastrointestinal tract
8
antanal-1 antanal-2
8
antanal-2 antanal-2a
8
mouse ileum
8
ileum colon
8
bbb permeability
8
hot plate
8
plate test
8

Similar Publications

Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.

View Article and Find Full Text PDF

Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits.

Front Neurosci

January 2025

The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.

Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.

Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.

View Article and Find Full Text PDF

Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers.

J Med Chem

January 2025

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.

Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!