Large areas of tumor are nutrient-starved and hypoxic due to a disorganized vascular system. Therefore, we screened small molecules to identify cytotoxic agents that function preferentially in nutrient-starved conditions. We found that efrapeptin F had preferential cytotoxicity to nutrient-deprived cells compared with nutrient-sufficient cells. Because efrapeptin F acts as a mitochondrial complex V inhibitor, we examined whether inhibitors of complex I, II, III, and V function as cytotoxic agents preferentially in nutrient-deprived cells. Interestingly, these inhibitors showed preferential cytotoxicity to nutrient-deprived cells and caused cell death under glucose-limiting conditions, irrespective of the presence or absence of amino acids and/or serum. In addition, these inhibitors were preferentially cytotoxic to nutrient-deprived cells even under hypoxic conditions. Further, efrapeptin F showed antitumor activity in vivo. These data indicate that mitochondrial inhibitors show preferential cytotoxicity to cancer cells under glucose-limiting conditions, and these inhibitors offer a promising strategy for anticancer therapeutic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.01.050DOI Listing

Publication Analysis

Top Keywords

preferential cytotoxicity
16
nutrient-deprived cells
16
inhibitors preferential
12
mitochondrial inhibitors
8
cytotoxic agents
8
conditions efrapeptin
8
cytotoxicity nutrient-deprived
8
glucose-limiting conditions
8
cells
7
conditions
5

Similar Publications

Nano-polymeric platinum activates PAR2 gene editing to suppress tumor metastasis.

Biomaterials

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China. Electronic address:

Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways.

View Article and Find Full Text PDF

Cabozantinib Selectively Induces Proteasomal Degradation of p53 Somatic Mutant Y220C and Impedes Tumor Growth.

J Biol Chem

January 2025

Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:

Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.

View Article and Find Full Text PDF

The adoptive transfer of TCR-T cells specific to neoantigens preferentially exhibits potent cytotoxicity to tumor cells and has shown promising efficacy in various preclinical human cancers. In this study, we first identified a functional TCR, Tcr-1, which selectively recognized the SYT-SSX fusion neoantigen shared by most synovial sarcomas. Engineered T-cell expressing Tcr-1 (Tcr-T1) demonstrated HLA-A*2402-restricted, antigen-specific anti-tumoral efficacy against synovial sarcoma cells, both in vitro and in vivo.

View Article and Find Full Text PDF

The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids.

View Article and Find Full Text PDF

In this study, four depsides were isolated from Origanum dictamnus L. and Satureja pilosa Velen. medicinal plants and their structures were assessed by means of one-dimensional (1D)- and two-dimensional (2D)-nuclear magnetic resonance, high resolution mass spectrometry, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!