Acute hypoxia modifies cAMP levels induced by inhibitors of phosphodiesterase-4 in rat carotid bodies, carotid arteries and superior cervical ganglia.

Br J Pharmacol

Department of Pharmacology and CEDOC, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria, 130, Lisbon, Portugal.

Published: January 2010

Background And Purpose: Phosphodiesterase (PDE) inhibitors are useful to treat hypoxia-related diseases and are used in experiments studying the effects of oxygen on 3'-5'-cyclic adenosine monophosphate (cAMP) production. We studied the effects of acute hypoxia on cAMP accumulation induced by PDE inhibitors in oxygen-specific chemosensors, the carotid bodies (CBs) and in non-chemosensitive CB-related structures: carotid arteries (CAs) and superior cervical ganglia (SCG).

Experimental Approach: Concentration-response curves for the effects of a non-specific PDE inhibitor [isobutylmethylxanthine (IBMX) ], PDE4 selective inhibitors (rolipram, Ro 20-1724) and a PDE2 selective inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine) on cAMP levels were obtained in normoxic (20% O(2)/5% CO(2)) or hypoxic (5% O(2)/5% CO(2)) conditions.

Key Results: Responses to the PDE inhibitors were compatible with the presence of PDE4 in rat CBs, CAs and SCG but in the absence of PDE2 in CAs and CBs. Acute hypoxia enhanced the effects of IBMX and PDE4 inhibitors on cAMP accumulation in CAs and CBs. In SCG, acute hypoxia reduced cAMP accumulation induced by all the four PDE inhibitors tested. Differences between the effects of Ro 20-1724 and rolipram on cAMP were found in CAs and CBs during hypoxia.

Conclusions And Implications: The effects of PDE4 inhibitors could be potentiated or inhibited by acute hypoxia depending on the PDE isoforms of the tissue. The similarities between the characterization of PDE4 inhibitors at the CBs and CAs, under normoxia and hypoxia, did not support a specific role for cAMP in the oxygen-sensing machinery at the CB and suggested that no direct CB-mediated, hyperventilatory, adverse effects would be expected with administration of PDE4 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825357PMC
http://dx.doi.org/10.1111/j.1476-5381.2009.00534.xDOI Listing

Publication Analysis

Top Keywords

acute hypoxia
20
pde inhibitors
16
pde4 inhibitors
16
camp accumulation
12
cas cbs
12
inhibitors
10
camp
8
camp levels
8
carotid bodies
8
carotid arteries
8

Similar Publications

Hydroxyacyl-coenzyme A dehydrogenase: A biomarker for authentication of death from mechanical asphyxia.

Forensic Sci Int

January 2025

Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China. Electronic address:

Death from mechanical asphyxia (DMA) refers to death from acute respiratory disorder caused by mechanical violence. Due to the absence of characteristic signs in corpses, it has been rather challenging to achieve the precise authentication of DMA. In this research, human pulmonary samples were collected and grouped according to different causes of death in search of potential biomarkers of DMA.

View Article and Find Full Text PDF

Objective: Although the efficacy of high-flow nasal oxygen therapy in delaying or avoiding intubation in patients with hypoxemic respiratory failure has been studied, its potential for facilitating early weaning from invasive mechanical ventilation remains unexplored.

Methods: In this randomized controlled trial, 80 adults with acute hypoxemic respiratory failure requiring invasive mechanical ventilation for > 48 hours were enrolled and divided into two groups: conventional weaning and early weaning via high-flow nasal oxygen. In the conventional weaning group, the spontaneous breathing trial was performed after the PaO2/FiO2 ratio was ≥ 200, whereas in the high-flow nasal oxygen group, the spontaneous breathing trial was conducted earlier when the PaO2/FiO2 ratio was 150 - 200.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.

View Article and Find Full Text PDF

In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment.

View Article and Find Full Text PDF

Background: Tumour hypoxia resulting from inadequate perfusion is common in many solid tumours, including prostate cancer, and constitutes a major limiting factor in radiation therapy that contributes to treatment resistance. Emerging research in preclinical animal models indicates that exercise has the potential to enhance the efficacy of cancer treatment by modulating tumour perfusion and reducing hypoxia; however, evidence from randomised controlled trials is currently lacking. The 'Exercise medicine as adjunct therapy during RADIation for CAncer of the prostaTE' (ERADICATE) study is designed to investigate the impact of exercise on treatment response, tumour physiology, and adverse effects of treatment in prostate cancer patients undergoing external beam radiation therapy (EBRT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!