Aim: To investigate the in vivo hepatoprotective effects and mechanisms of Gentiana manshurica Kitagawa (GM) in acetaminophen (APAP)-induced liver injury in mice.
Methods: GM (200, 150 or 50 mg/kg body weight) or N-acetyl-L-cysteine (NAC; 300 mg/kg body weight) was administrated orally with a single dose 2 h prior to APAP (300 mg/kg body weight) injection in mice.
Results: APAP treatment significantly depleted hepatic glutathione (GSH), increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and malonyldialdehyde (MDA) and 4-hydroxynonenal levels, and decreased hepatic activity of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD). However, the pretreatment of GM significantly alleviated APAP-induced oxidative stress by increasing GSH content, decreasing serum ALT, AST and MDA, and retaining the activity of GSH-px and SOD in the liver. Furthermore, GM pretreatment can inhibit caspase-3 activation and phosphorylation of c-Jun-NH2-terminal protein kinase 2 (JNK1/2) and extracellular signal-regulated kinase (ERK). GM also remarkably attenuated hepatocyte apoptosis confirmed by the terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling method.
Conclusion: Hepatoprotective effects of GM against APAP-induced acute toxicity are mediated either by preventing the decline of hepatic antioxidant status or its direct anti-apoptosis capacity. These results support that GM is a potent hepatoprotective agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807962 | PMC |
http://dx.doi.org/10.3748/wjg.v16.i3.384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!