Single-walled carbon nanotubes provide an ideal system for studying the properties of one-dimensional (1D) materials, where strong electron-electron interactions are expected. Optical measurements have recently reported the existence of excitons in semiconducting nanotubes, revealing the importance of many-body effects. Surprisingly, pioneering electronic structure calculations and scanning tunnelling spectroscopy (STS) experiments report the same gap values as optical experiments. Here, an experimental STS study of the bandgap of single-walled semiconducting nanotubes, demonstrates a continuous transition from the gap reduced by the screening resulting from the metal substrate to the intrinsic gap dominated by many-body interactions. These results provide a deeper knowledge of many-body interactions in these 1D systems and a better understanding of their electronic properties, which is a prerequisite for any application of nanotubes in the ultimate device miniaturization for molecular electronics, or spintronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat2624 | DOI Listing |
Phys Rev Lett
December 2024
Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.
We present a protocol for detecting multipartite entanglement in itinerant many-body electronic systems using single-particle Green's functions. To achieve this, we first establish a connection between the quantum Fisher information and single-particle Green's functions by constructing a set of witness operators built out of single electron creation and destruction operators in a doubled system. This set of witness operators is indexed by a momentum k.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
We present a hybrid semiempirical density functional tight-binding (DFTB) model with a machine learning neural network potential as a correction to the repulsive term. This hybrid model, termed machine learning tight-binding (MLTB), employs the standard self-consistent charge (SCC) DFTB formalism as a baseline, enhanced by the HIP-NN potential as an effective many-body correction for short-range pairwise repulsive interactions. The MLTB model demonstrates significantly improved transferability and extensibility compared to the SCC-DFTB and HIP-NN models.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
School of Computing and Information Technology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
In Self-Consistent Field (SCF) calculations, the choice of initial guess plays a key role in determining the time-to-solution by influencing the number of iterations required for convergence. However, focusing solely on reducing iterations may overlook the computational cost associated with improving the accuracy of initial guesses. This study critically evaluates the effectiveness of two initial guess methods─basis set projection (BSP) and many-body expansion (MBE) on Hartree-Fock and hybrid Density Functional Theory (B3LYP and MN15) methods.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.
Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!