Plant cell signaling triggers the abscission of entire organs, such as fruit, leaves and flowers. Previously, we characterized an ADP-ribosylation factor GTPase-activating protein, NEVERSHED (NEV), that regulates membrane trafficking and is essential for floral organ shedding in Arabidopsis. Through a screen for mutations that restore organ separation in nev flowers, we have identified a leucine-rich repeat receptor-like kinase, EVERSHED (EVR), that functions as an inhibitor of abscission. Defects in the Golgi structure and location of the trans-Golgi network in nev abscission zone cells are rescued by a mutation in EVR, suggesting that EVR might regulate membrane trafficking during abscission. In addition to shedding their floral organs prematurely, nev evr flowers show enlarged abscission zones. A similar phenotype was reported for plants ectopically expressing INFLORESCENCE DEFICIENT IN ABSCISSION, a predicted signaling ligand for the HAESA/HAESA-LIKE2 receptor-like kinases, indicating that this signaling pathway may be constitutively active in nev evr flowers. We present a model in which EVR modulates the timing and region of abscission by promoting the internalization of other receptor-like kinases from the plasma membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858908 | PMC |
http://dx.doi.org/10.1242/dev.041335 | DOI Listing |
Genes (Basel)
December 2024
Latvian State Forest Research Institute "Silava", 111 Rigas St., LV-2169 Salaspils, Latvia.
Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented.
View Article and Find Full Text PDFBiology (Basel)
December 2024
College of Agriculture, Jilin Agricultural Science and Technology College, Jilin 132101, China.
Plant lectin receptor-like kinases (LecRLKs) are plant membrane protein receptor kinases. Lectin-like receptor kinases play a crucial role in regulating plant growth, development, and responses to environmental stimuli. It can rapidly respond to both biotic and abiotic stresses while mediating mechanisms of plant immune responses.
View Article and Find Full Text PDFCell
January 2025
New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China. Electronic address:
Most land plants form symbioses with microbes to acquire nutrients but also must restrict infection by pathogens. Here, we show that a single pair of lysin-motif-containing receptor-like kinases, MpaLYR and MpaCERK1, mediates both immunity and symbiosis in the liverwort Marchantia paleacea. MpaLYR has a higher affinity for long-chain (CO7) versus short-chain chitin oligomers (CO4).
View Article and Find Full Text PDFHortic Res
January 2025
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.
View Article and Find Full Text PDFMol Hortic
January 2025
Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!