There is great interest in the exploration of hydrogen-rich compounds upon strong compression where they can become superconductors. Stannane (SnH(4)) has been proposed to be a potential high-temperature superconductor under pressure, but its high-pressure crystal structures, fundamental for the understanding of superconductivity, remain unsolved. Using an ab initio evolutionary algorithm for crystal structure prediction, we propose the existence of two unique high-pressure metallic phases having space groups Ama2 and P6(3)/mmc, which both contain hexagonal layers of Sn atoms and semimolecular (perhydride) H(2) units. Enthalpy calculations reveal that the Ama2 and P6(3)/mmc structures are stable at 96-180 GPa and above 180 GPa, respectively, while below 96 GPa SnH(4) is unstable with respect to elemental decomposition. The application of the Allen-Dynes modified McMillan equation reveals high superconducting temperatures of 15-22 K for the Ama2 phase at 120 GPa and 52-62 K for the P6(3)/mmc phase at 200 GPa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824346PMC
http://dx.doi.org/10.1073/pnas.0908342107DOI Listing

Publication Analysis

Top Keywords

high-pressure crystal
8
crystal structures
8
stannane snh4
8
ama2 p63/mmc
8
gpa
5
structures superconductivity
4
superconductivity stannane
4
snh4 great
4
great interest
4
interest exploration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!