Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures.

Proc Natl Acad Sci U S A

Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen, Switzerland.

Published: January 2010

Radiation damage is the major impediment for obtaining structural information from biological samples by using ionizing radiation such as x-rays or electrons. The knowledge of underlying processes especially at cryogenic temperatures is still fragmentary, and a consistent mechanism has not been found yet. By using a combination of single-crystal x-ray diffraction, small-angle scattering, and qualitative and quantitative radiolysis experiments, we show that hydrogen gas, formed inside the sample during irradiation, rather than intramolecular bond cleavage between non-hydrogen atoms, is mainly responsible for the loss of high-resolution information and contrast in diffraction experiments and microscopy. The experiments that are presented in this paper cover a temperature range between 5 and 160 K and reveal that the commonly used temperature in x-ray crystallography of 100 K is not optimal in terms of minimizing radiation damage and thereby increasing the structural information obtainable in a single experiment. At 50 K, specific radiation damage to disulfide bridges is reduced by a factor of 4 compared to 100 K, and samples can tolerate a factor of 2.6 and 3.9 higher dose, as judged by the increase of R(free) values of elastase and cubic insulin crystals, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798883PMC
http://dx.doi.org/10.1073/pnas.0905481107DOI Listing

Publication Analysis

Top Keywords

radiation damage
16
biological samples
8
cryogenic temperatures
8
radiation
5
origin temperature
4
temperature dependence
4
dependence radiation
4
damage
4
damage biological
4
samples cryogenic
4

Similar Publications

Aim: The World Health Organization reported that cancer was the cause of death for 9.7 million people in 2022, and the numbers continue to rise every day. The present study examines the potential radioprotective effects of ubiquinone against x-ray radiation-induced intestinal damage and offers insight into new near-future methods for the treatment of radiation-induced tissue toxicity.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

: Alpha radionuclide therapy has emerged as a promising novel strategy for cancer treatment; however, the therapeutic potential of Ac-labeled peptides in pancreatic cancer remains uninvestigated. : In the cytotoxicity study, tumor cells were incubated with Ac-DOTA-RGD. DNA damage responses (γH2AX and 53BP1) were detected using flowcytometry or immunohistochemistry analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!