Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper considers a family of inductive problems where reasoners must identify familiar categories or features on the basis of limited information. Problems of this kind are encountered, for example, when word learners acquire novel labels for pre-existing concepts. We develop a probabilistic model of identification and evaluate it in three experiments. Our first two experiments explore problems where a single category or feature must be identified, and our third experiment explores cases where participants must combine several pieces of information in order to simultaneously identify a category and a feature. Humans readily solve all of these problems, and we show that our model accounts for human inferences better than several alternative approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actpsy.2009.11.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!