Tapioca starch graft copolymers and Dome Matrix modules assembling technology. I. Effect of module shape on drug release.

Eur J Pharm Biopharm

Dpto. Farmacia y Tecnología Farmacéutica, Universidad de Sevilla, Sevilla, Spain.

Published: May 2010

This paper studies the Riboflavin release from compressed disc modules of Dome Matrix(R) technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA), graft copolymers produced by two different drying methods. The comparison with the release behaviour of similar HPMC modules was performed. Two different shape modules have been made, identified as female and male modules, in order to obtain their assemblage by interlocking the disc bases. HPMC matrices showed quasi-linear Riboflavin release in case of both female and male modules, with faster drug release than TSEMA modules. In the case of THSEMA modules, a faster release was observed compared to HPMC modules. Furthermore, matrices obtained with TSEMA copolymers remained nearly intact after dissolution process, while matrices containing HPMC experimented a complete dissolution of the modules. Combining these results with the release curve analysis using the Korsmeyer and Peppas exponential equation, HPMC modules controlled the drug release by polymer relaxation or erosion. For TSEMA and THSEMA, the drug release mechanism was controlled mainly by drug diffusion. The pronounced faster releases for the matrices containing THSEMA copolymers compared with the ones with TSEMA were due to a more important erosive support; however, the main structure of the matrix remains coherent. Porosity and tortuosity values and the shape of the modules explained the drug release observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2010.01.004DOI Listing

Publication Analysis

Top Keywords

drug release
20
modules
12
hpmc modules
12
release
10
graft copolymers
8
riboflavin release
8
shape modules
8
female male
8
male modules
8
modules faster
8

Similar Publications

AI comes to the Nobel Prize and drug discovery.

J Pharm Anal

November 2024

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

View Article and Find Full Text PDF

Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages.

Research (Wash D C)

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.

Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.

View Article and Find Full Text PDF

Background/aims: Gastroesophageal reflux disease (GERD) is a chronic and recurrent condition requiring constant dietary management and medication. This study evaluated the efficacy and safety of HIP1601, a dual delayed-release formulation of esomeprazole, in patients with GERD in a clinical setting.

Methods: This prospective, multicenter, observational study was conducted at 309 medical institutions in Korea between June 2021 and March 2023.

View Article and Find Full Text PDF

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

A comprehensive review on anti-allergic natural bioactive compounds for combating food allergy.

Food Res Int

February 2025

School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China. Electronic address:

Food allergy poses a great challenge to food safety and public health worldwide. Currently, clinical symptoms are primarily managed with medications, which can lead to drug resistance, adverse effects, and disruptions in gut flora balance. As a result, there has been a focus on researching safe and effective anti-allergic natural ingredients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!