Objective: Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific messenger RNA (mRNA) in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA.
Materials And Methods: Murine bone marrow cells cocultured with rat lung, but separated from them using a cell-impermeable membrane (0.4-microm pore size), were analyzed using species-specific primers (for rat or mouse).
Results: These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung cocultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after coculture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer-term stable change in genetic phenotype that has been observed. We have also observed microRNA in lung-derived microvesicles, and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in cocultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart, and liver mRNA in cocultured marrow cells, suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena.
Conclusion: These studies suggest that cellular systems are more phenotypically labile than previously considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829939 | PMC |
http://dx.doi.org/10.1016/j.exphem.2010.01.002 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina.
Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.
Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.
Pharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is a malignant condition of lymphoid progenitor cells that primarily affects the pediatric population, but also adults. The 5-year survival rate is 90% in children and approximately 40% in adults, with survival increasing through the use of peripheral stem cell allotransplantation (SCT). The relapse rate after stem cell transplantation (SCT) in adult acute lymphoblastic leukemia (ALL) patients ranges from 35% to 45%, making relapse a major cause of death in this population.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Hematology, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece.
Multiple Myeloma (MM) is a complex hematological malignancy characterized by the clonal proliferation of malignant plasma cells within bone marrow (BM) [...
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
There are many different cells that perform highly specialized functions in the human hematological and immune systems. Due to the relevance of their activity, in this work we investigated the cell types and subtypes that form this complex system, using single-cell RNA sequencing (scRNA-seq) to dissect and assess the markers that best define each cell population. We first developed an optimized computational workflow for analyzing large scRNA-seq datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!