NUMBL interacts with TRAF6 and promotes the degradation of TRAF6.

Biochem Biophys Res Commun

School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China.

Published: February 2010

Tumor necrosis factor-associated factor 6 (TRAF6) is an essential adaptor protein for IL-1R or TLR-mediated NF-kappaB signaling pathway activation. In previous work we have found NUMBL interacts with TAB2 and negatively regulates NF-kappaB signaling pathway. Here, we report that NUMBL directly binds to TRAF6 in vivo and in vitro. NUMBL down-regulates TRAF6 protein level and shortens its half-life. Furthermore, knockdown of NUMBL significantly increases endogenous TRAF6 protein level in the cultured cortical neurons. In vivo ubiquitination assays indicate that NUMBL promotes the assembly of K48-linked polyubiquitination chains on TRAF6, but has no significant effect on its K63-linked polyubiquitination. Our results collectively reveal that NUMBL interacts with TRAF6 and promotes the degradation of TRAF6 in vivo, leading to the inhibition of NF-kappaB signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.01.037DOI Listing

Publication Analysis

Top Keywords

numbl interacts
12
nf-kappab signaling
12
signaling pathway
12
traf6
9
interacts traf6
8
traf6 promotes
8
promotes degradation
8
degradation traf6
8
traf6 vivo
8
traf6 protein
8

Similar Publications

The NOTCH-signaling pathway is responsible for intercellular interactions and cell fate commitment. Recently, NOTCH pathway genes were demonstrated to play an important role in aortic valve development, leading to an increased calcified aortic valve disease (CAVD) later in life. Here, we further investigate the association between genetic variants in the NOTCH pathway genes and aortic stenosis in a case-control study of 90 CAVD cases and 4723 controls using target panel sequencing of full-length 20 genes from a NOTCH-related pathway (, , , , , , , , , , , , , , , , , , , ).

View Article and Find Full Text PDF

Here, we investigated the mechanisms by which aging-related reductions of the levels of in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. expression is reduced in old humans and mice.

View Article and Find Full Text PDF

Comprehensive pan-cancer analysis of expression profiles and prognostic significance for NUMB and NUMBL in human tumors.

Medicine (Baltimore)

September 2023

Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.

NUMB has been initially identified as a critical cell fate determinant that modulates cell differentiation via asymmetrical partitioning during mitosis, including tumor cells. However, it remains absent that a systematic assessment of the mechanisms underlying NUMB and its homologous protein NUMBLIKE (NUMBL) involvement in cancer. This study aimed to investigate the prognostic significance for NUMB and NUMBL in pan-cancer.

View Article and Find Full Text PDF

Here, we investigated mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development including asymmetric cell division, cell-type specification and termination of intracellular signaling. Numb expression is reduced in old humans and mice.

View Article and Find Full Text PDF

The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!