The aim of this study was to characterize the molecular evolution of P and V protein genes of the Newcastle disease virus (NDV). The P gene sequences of 55 NDV isolates, representing different chronological and geographic origins, were obtained from GenBank. In this paper, the evolution of the specific regions of the NDV P gene, encoding the P and V proteins, was analyzed. The nucleotides from the shared P/V region encoded the co-amino terminus of the two proteins, while the P-V/V-P region was respectively encoded by the nucleotides within the P ORF or the V ORF in the common sequence (after the mRNA editing site). As well, the P-cut region exclusively encoded the P protein. Finally, the P-V and V-P regions were further broken down into P1 and P2 fragments with the corresponding V1 and V2 fragments. In the P gene, the P-cut portion corresponding to the C-terminal of the P protein was the most highly conserved, while the P-V region was the most variable. This was interpreted as a lower constraint for function in the common sequence than in the unique P sequence that is known to contain an important function. Interestingly, in the common P-V/V-P function, variability of V1 was compensated by a higher conservation of the corresponding P1, and conversely for the P2/V2, which suggested that the flexibility of one ORF with less function served the purpose of allowing positive selection in the other overlapping ORF that exhibited more function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2009.12.029DOI Listing

Publication Analysis

Top Keywords

newcastle disease
8
disease virus
8
ndv gene
8
region encoded
8
common sequence
8
function
5
selection characterization
4
characterization overlapping
4
overlapping reading
4
reading frame
4

Similar Publications

Clinical Spectrum and Prognosis of Atypical Autosomal Dominant Polycystic Kidney Disease Caused by Monoallelic Pathogenic Variants of IFT140.

Am J Kidney Dis

December 2024

Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:

Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.

Study Design: Case series.

View Article and Find Full Text PDF

Vascular Ehlers-Danlos syndrome (vEDS) is a rare inherited connective tissue disorder predominantly caused by pathogenic COL3A1 variants. Characteristic arterial and intestinal fragility and generalised severe tissue friability can lead to clinical events from childhood. We highlight a paucity of literature regarding children diagnosed with vEDS, possibly explained by a restraint in predictive testing, and present data on 63 individuals (23 index cases) with a clinical and genetic diagnosis of vEDS in childhood (<18 years) to address this.

View Article and Find Full Text PDF

Associations Between Patient Characteristics and Progression to Multiple Myeloma Among Patients With Monoclonal Gammopathy of Undetermined Significance: A Systematic Review.

Clin Lymphoma Myeloma Leuk

December 2024

Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT. Electronic address:

Monoclonal gammopathy of undetermined significance (MGUS) is a pre-malignant condition of multiple myeloma (MM). Evidence suggested old age, black race, male gender, and obesity as risk factors for MGUS development; however, whether they are associated with an increased risk of progression to MM among patients with MGUS is unclear. A systematic search of PUBMED and EMBASE for cohort studies investigating the association between age/race/gender/obesity and progression to MM.

View Article and Find Full Text PDF

Purpose: Moyamoya disease (MMD) is a rare cerebrovascular disorder characterized by the narrowing of arteries at the brain's base. While cerebral angiography is the gold standard for diagnosis, high-resolution vessel wall magnetic resonance imaging (VW-MRI) has recently emerged as a non-invasive diagnostic tool. This systematic review aims to provide insights into the role of VW-MRI in enhancing the diagnosis and management of MMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!