[Effect of endoscopic sinus surgery on airflow of the nasal cavity and paranasal sinuses: a computational fluid dynamics study.].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

Otorhinolaryngology Hospital of the First Affiliated Hospital of Sun Yat-sen University, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou 510080, China.

Published: November 2009

Objective: To study the airflow velocity, trace, distribution, pressure, as well as the airflow exchange between the nasal cavity and paranasal sinuses in a computer simulation of nasal cavity pre and post virtual endoscopic sinus surgery (ESS).

Methods: Computational fluid dynamics (CFD) technique was applied to construct an anatomically and proportionally accurate three-dimensional nasal model based on a healthy adult woman's nasal CT scans. A virtual ESS intervention was performed numerically on the normal nasal model using Fluent 6.1.22 software. Navier-Stokes and continuity equations were used to calculate and compare the airflow characteristics between pre and post ESS models.

Results: (1) After ESS flux in the common meatus decreased significantly. Flux in the middle meatus and the connected area of opened ethmoid sinus increased by 10% during stable inhalation and by 9% during exhalation. (2) Airflow velocity in the nasal sinus complex increased significantly after ESS. (3) After ESS airflow trace was significantly changed in the middle meatus. Wide-ranging vortices formed at the maxillary sinus, the connected area of ethmoid sinus and the sphenoid sinus. (4) Total nasal cavity resistance was decreased after ESS. (5) After ESS airflow exchange increased in the nasal sinuses, most markedly in the maxillary sinus.

Conclusions: After ESS airflow velocity, flux and trace were altered. Airflow exchange increased in each nasal sinus, especially in the maxillary sinus.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nasal cavity
16
airflow velocity
12
airflow exchange
12
ess airflow
12
nasal
10
sinus
9
airflow
9
endoscopic sinus
8
sinus surgery
8
cavity paranasal
8

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.

View Article and Find Full Text PDF

Objective: To validate the use of neural radiance fields (NeRF), a state-of-the-art computer vision technique, for rapid, high-fidelity 3-dimensional (3D) reconstruction in endoscopic sinus surgery (ESS).

Study Design: An experimental cadaveric pilot study.

Setting: Academic medical center.

View Article and Find Full Text PDF

Objective: To evaluate the pharyngeal airway dimensions and regional pharyngeal adipose distribution in the young adult minipig model.

Materials And Methods: Eight 7-8-months-old Yucatan minipigs, half male and female, were sedated and placed prone to scan the pharyngeal region. Magnetic resonance imaging (MRI) was performed using dynamic turbo-field echo (TFE)-sequence with respiratory gating and adipose-weighted sequence.

View Article and Find Full Text PDF

Background And Objectives: The Chordate System administers kinetic oscillation stimulation (K.O.S) into the nasal cavity thereby potentially modulating the activity of trigemino-autonomic reflex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!