[Current situation researching of methylation in tumor].

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing 100005, China.

Published: December 2009

The disorders of DNA and histone methylation have a close relationship with the development and progression of tumors. Epigenetic regulation is critical in maintaining the stability and integrity of the expression profiles of different cell types by modifying DNA methylation and histone methylation. However, the abnormal changes of methylation often result in the development and progression of tumors. This review summarized the theory of tumor genomic and histone methylation, detection methods of methylation and their applications, and the clinical application of methylation as biological markers and drug targets.

Download full-text PDF

Source
http://dx.doi.org/10.3881/j.issn.1000-503X.2009.06.028DOI Listing

Publication Analysis

Top Keywords

histone methylation
12
methylation
8
development progression
8
progression tumors
8
[current situation
4
situation researching
4
researching methylation
4
methylation tumor]
4
tumor] disorders
4
disorders dna
4

Similar Publications

Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome.

Cell Stem Cell

December 2024

Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. Electronic address:

The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear.

View Article and Find Full Text PDF

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Profiling the epigenome using long-read sequencing.

Nat Genet

January 2025

Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain.

The advent of single-molecule, long-read sequencing (LRS) technologies by Oxford Nanopore Technologies and Pacific Biosciences has revolutionized genomics, transcriptomics and, more recently, epigenomics research. These technologies offer distinct advantages, including the direct detection of methylated DNA and simultaneous assessment of DNA sequences spanning multiple kilobases along with their modifications at the single-molecule level. This has enabled the development of new assays for analyzing chromatin states and made it possible to integrate data for DNA methylation, chromatin accessibility, transcription factor binding and histone modifications, thereby facilitating comprehensive epigenomic profiling.

View Article and Find Full Text PDF

[Paternal inheritance mediated by epigenetic changes in sperms].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China.

Epigenetics is the link between the genome and environment, which can respond to physiological (such as age) or environmental factors (such as diet, stress, and pollution) and induce changes in epigenetic modifications (such as DNA methylation, non-coding RNA, and histone modifications). It can also serve as cellular memory transmitted from generation to generation. Sperm is highly responsive to such environmental changes and has unique epigenetic profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!