Pathogens are considered a serious threat to which wild populations must adapt, most particularly under conditions of rapid environmental change. One way host adaptation has been studied is through genetic population structure at the major histocompatibility complex (MHC), a complex of adaptive genes involved in pathogen resistance in vertebrates. However, while associations between specific pathogens and MHC alleles or diversity have been documented from laboratory studies, the interaction between hosts and pathogens in the wild is more complex. As such, identifying selective agents and understanding underlying co-evolutionary mechanisms remains a major challenge. In this issue of Molecular Ecology, Evans & Neff (2009) characterized spatial and temporal variation in the bacterial parasite community infecting Chinook salmon (Oncorhynchus tshawytscha) fry from five populations in British Columbia, Canada. They used a 16S rDNA sequencing-based approach to examine the prevalence of bacterial infection in kidney and looked for associations with MHC class I and II genetic variability. The authors found a high diversity of bacteria infecting fry, albeit at low prevalence. It was reasoned that spatial variability in infection rate and bacterial community phylogenetic similarity found across populations may represent differential pathogen-mediated selection pressures. The study revealed some evidence of heterozygote advantage at MHC class II, but not class I, and preliminary associations between specific MHC alleles and bacterial infections were uncovered. This research adds an interesting perspective to the debate on host-pathogen co-evolutionary mechanisms and emphasizes the importance of considering the complexity of pathogen communities in studies of host local adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2009.04375.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!