[Effects of nitrogen fertilization on fine root lifespan of Fraxinus mandshurica and Larix gmelinii].

Ying Yong Sheng Tai Xue Bao

Department of Ecology and Environmental Science, Nanjing Forestry University, Nanjing 210037, China.

Published: October 2009

Root observation tubes (minirhizotrons) were used to study the effects of nitrogen addition on the fine root growth of Fraxinus mandshurica and Larix gmelinii, with the correlations between the fine root lifespan and nitrogen availability analyzed. After the nitrogen addition, the fine root number of F. mandshurica and L. gmelinii had a decreasing trend, but the fine root diameter became larger and the branching ratio decreased. The survival rate of F. mandshurica fine roots increased, and the median root lifespan prolonged 105 days, compared with the control. No significant responses to the nitrogen addition were observed in the survival rate of L. gmelinii fine roots. The first-order fine roots with smaller diameter, the roots in surface soil (0-15 cm), and the fine roots newly born in spring and summer were vulnerable to extend their lifespan by nitrogen addition, suggesting that the fine roots with higher physiological activity were easily to be affected by nitrogen fertilization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fine root
20
fine roots
20
nitrogen addition
16
root lifespan
12
fine
10
nitrogen fertilization
8
fraxinus mandshurica
8
mandshurica larix
8
addition fine
8
lifespan nitrogen
8

Similar Publications

Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

Phosphorus Fertilization and Chemical Root Pruning: Effects on Root Traits During the Nursery Stage in Two Mediterranean Species from Central Chile.

Plants (Basel)

January 2025

Escuela de Ingeniería en Agronomía, Campus Tecnológico Local San Carlos, Tecnológico de Costa Rica, Alajuela 22321001, Costa Rica.

The role of a plant root system in resource acquisition is relevant to confront drought events caused by climate change. Accordingly, nursery practices like phosphorous (P) fertilization and root pruning have been shown to modify root architecture; however, their combined benefits require further investigation in Mediterranean species. We evaluated the effect of applied P concentrations (0, 15, 60, and 120 mg L P) with or without chemical (copper) root pruning (WCu, WoCu, respectively) in and on morpho-physiological and root architecture traits.

View Article and Find Full Text PDF

Characterizing Stream Condition with Benthic Macroinvertebrates in Southeastern Minnesota, USA: Agriculture, Channelization, and Karst Geology Impact Lotic Habitats and Communities.

Insects

January 2025

Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.

Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).

View Article and Find Full Text PDF

Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!