Tertiary carbinamine synthesis by rhodium-catalyzed [3+2] annulation of N-unsubstituted aromatic ketimines and alkynes.

Chemistry

Department of Chemistry and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, P.O. Box 6050, Fargo, ND 58108-6050, USA.

Published: February 2010

A convenient and waste-free synthesis of indene-based tertiary carbinamines by rhodium-catalyzed imine/alkyne [3+2] annulation is described. Under the optimized conditions of 0.5-2.5 mol % [{(cod)Rh(OH)}(2)] (cod=1,5-cyclooctadiene) catalyst, 1,3-bis(diphenylphosphanyl)propane (DPPP) ligand, in toluene at 120 degrees C, N-unsubstituted aromatic ketimines and internal alkynes were coupled in a 1:1 ratio to form tertiary 1H-inden-1-amines in good yields and with high selectivities over isoquinoline products. A plausible catalytic cycle involves sequential imine-directed aromatic C-H bond activation, alkyne insertion, and a rare example of intramolecular ketimine insertion into a Rh(I)-alkenyl linkage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200902814DOI Listing

Publication Analysis

Top Keywords

[3+2] annulation
8
n-unsubstituted aromatic
8
aromatic ketimines
8
tertiary carbinamine
4
carbinamine synthesis
4
synthesis rhodium-catalyzed
4
rhodium-catalyzed [3+2]
4
annulation n-unsubstituted
4
ketimines alkynes
4
alkynes convenient
4

Similar Publications

Copper(II)-Catalyzed Asymmetric (3+3) Annulation of Diaziridines with Oxiranes.

Org Lett

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

Highly asymmetric (3+3) annulation of diaziridines with oxiranes via C-N bond cleavage in diaziridine was achieved under 10 mol % of chiral copper(II) complex as the catalyst under mild reaction conditions. With Cu(OTf) as the Lewis acid and C-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand, diverse tetrahydro-[1,3,4]-oxadiazines were obtained by stereospecific C-N/C-O bond formation in moderate to good yields (up to 93% yield) and high diastereo- (>20:1 dr) and enantioselectivities (up to 92% ee). The catalytic cycle and stereochemical model were proposed by DFT calculation.

View Article and Find Full Text PDF

We have devised a copper-catalysed tandem annulation reaction to generate a new class of bicyclic nucleoside analogues (BCNAs), namely, amino-substituted thiazolopyrimidine ribonucleosides. The reaction between triacetyl-5-iodo-cytidine and an appropriate organic isothiocyanate in the presence of a Cu salt and ligand resulted in the formation of an amino-substituted thiazolopyrimidine moiety. This reaction was found to be compatible with a range of aliphatic and aromatic isothiocyanates, affording the corresponding products in moderate to good yields.

View Article and Find Full Text PDF

A novel HSO-catalyzed ANRORC-type rearrangement of pyrazinones to imidazoles proceeding through pyridazino[]annulation with simultaneous introduction of a pyrazole ring at position 2 of the imidazole system has been developed, which offers efficient and expedited access to new biheterocyclic systems - 2-(pyrazol-3-ul)imidazoles and 2-(pyrazol-3-yl)imidazo[4,5-]pyridazines. Diverse bi--heterocyclic systems with the imidazo[4,5-]pyridazine-4,7-diamine moiety could be obtained in excellent yield when 5,6-dicyano-3-(2-oxo-2-ethyl)pyrazin-2(1)-ones interact with hydrazines the selective spiro-formation in a tandem ring-opening/ring-closing process, which allowed the simultaneous construction of five new C-N bonds. This new method is compatible with an array of functional groups, proceeds under mild reaction conditions with the involvement of commercially available reagents.

View Article and Find Full Text PDF

An -heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.

View Article and Find Full Text PDF

Mild [3 + 3] Annulation of (Trifluoromethyl)alkenes with Thioureas Enabled by Chemoselective Defluorinative Amination: Synthesis of 6-Fluoro-3,4-dihydropyrimidine-2(1)-thiones.

J Org Chem

January 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China.

The chemoselective defluorinative [3 + 3] annulation of (trifluoromethyl)alkenes with thioureas is reported. This protocol affords various attractive 6-fluoro-3,4-dihydropyrimidine-2(1)-thiones in high yields, features transition-metal free, mild conditions, efficient, is operationally simple and gram-scalable, tolerates diverse useful functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!