Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endocrine-disrupting chemicals (EDC) produce adverse effects on reproductive and immune function or neurological behavior, and may also induce cancer. The environmental EDC bisphenol A (BPA) is widely used in the manufacture of plastics and epoxy resins. BPA affects reproductive organ growth and development, but the potential adverse effects of BPA on neuronal development are not fully understood. Here, BPA concentration-dependently decreased proliferation of murine-derived multipotent neural progenitor cells (NPC), and high concentrations produced cytotoxicity. In contrast, low concentrations of BPA, which possess estrogenic activity, stimulated NPC differentiation into a neuronal phenotype. BPA treatment did not affect neonatal brain development in F1 mice. However, BPA treatment (20 mg/kg) accelerated formation of the dentate gyrus in postnatal day 1 mice. Prenatal and postnatal BPA treatment did not affect adult hippocampal neurogenesis in the dentate gyrus in 8-wk-old mice. Data indicate that BPA stimulates neuronal differentiation and might disrupt neonatal brain development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287390903212501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!