A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. | LitMetric

Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis.

J Toxicol Environ Health A

Department of Pharmacy, College of Pharmacy and Longevity Life Science and Technology Institutes, Pusan National University, Geumjeong-gu, Busan, Korea.

Published: February 2010

Endocrine-disrupting chemicals (EDC) produce adverse effects on reproductive and immune function or neurological behavior, and may also induce cancer. The environmental EDC bisphenol A (BPA) is widely used in the manufacture of plastics and epoxy resins. BPA affects reproductive organ growth and development, but the potential adverse effects of BPA on neuronal development are not fully understood. Here, BPA concentration-dependently decreased proliferation of murine-derived multipotent neural progenitor cells (NPC), and high concentrations produced cytotoxicity. In contrast, low concentrations of BPA, which possess estrogenic activity, stimulated NPC differentiation into a neuronal phenotype. BPA treatment did not affect neonatal brain development in F1 mice. However, BPA treatment (20 mg/kg) accelerated formation of the dentate gyrus in postnatal day 1 mice. Prenatal and postnatal BPA treatment did not affect adult hippocampal neurogenesis in the dentate gyrus in 8-wk-old mice. Data indicate that BPA stimulates neuronal differentiation and might disrupt neonatal brain development.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287390903212501DOI Listing

Publication Analysis

Top Keywords

bpa treatment
12
bpa
9
neuronal differentiation
8
hippocampal neurogenesis
8
adverse effects
8
treatment affect
8
neonatal brain
8
brain development
8
dentate gyrus
8
potencies bisphenol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!